{"id":380047,"date":"2024-10-20T03:05:10","date_gmt":"2024-10-20T03:05:10","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iso-iec-tr-301672021\/"},"modified":"2024-10-26T05:34:35","modified_gmt":"2024-10-26T05:34:35","slug":"bsi-pd-iso-iec-tr-301672021","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iso-iec-tr-301672021\/","title":{"rendered":"BSI PD ISO\/IEC TR 30167:2021"},"content":{"rendered":"
This document describes the enabling and driving technologies of underwater communication such as acoustic communication, optical communication, Very Low Frequency (VLF)\/Extremely Low Frequency (ELF) communication, and Magnetic Fusion Communication (MFC). This document also highlights:<\/p>\n
technical overview of different communication technologies;<\/p>\n<\/li>\n
characteristics of different communication technologies;<\/p>\n<\/li>\n
trends of different communication technologies;<\/p>\n<\/li>\n
applications of each communication technology;<\/p>\n<\/li>\n
benefits and challenges of each communication technology.<\/p>\n<\/li>\n<\/ul>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions 4 Symbols and abbreviated terms <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | 5 Enabling\/driving technologies of underwater communication 5.1 General <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 5.2 Acoustic communication 5.2.1 Technical overview Figures Figure 1 \u2013 Example of underwater acoustic sensor network system <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | Figure 2 \u2013 Path loss of sound wave Figure 3 \u2013 Multipath of sound wave <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | Figure 4 \u2013 Terrestrial\/underwater interworking gateway <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 5.2.2 Trend of technology (modern communication trends) <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 5.3 Optical (wire\/wireless) communication 5.3.1 Technical overview Figure 5 \u2013 Underwater cable structure Figure 6 \u2013 Fibre-optic wired communication system overview <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Figure 7 \u2013 Current underwater cable map <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 5.3.2 Trend of technology (modern communication trends) <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Figure 8 \u2013 Optical wired communication system overview Figure 9 \u2013 Optical wired communication system based on WDM technology <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 5.4 Very Low Frequency (VLF)\/Extremely Low Frequency (ELF) 5.4.1 Technical overview <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Figure 10 \u2013 Trideco antenna tower array used in the US Navy’s Cutler station Figure 11 \u2013 Valley-span antenna type used by the US navy station, Jim Creek <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 5.4.2 Trend of technology (modern communication trends) <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | Figure 12 \u2013 Aerial photograph of Clam Lake ELF facility in Wisconsin, USA (1982) <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | Figure 13 \u2013 Cutler VLF transmitter’s antenna towers Figure 14 \u2013 Cutler antenna array <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Figure 15 \u2013 VLF transmission centre in Japan Figure 16 \u2013 Trideco-type antenna placement in Harold E. Holt <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 5.5 Magnetic fusion communication (MFC) 5.5.1 Technical overview Figure 17 \u2013 Australian VLF transmitter (1979) <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | Figure 18 \u2013 Shape of envelope Tables Table 1 \u2013 Envelope parameters <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Figure 19 \u2013 BPSK modulated signal <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 5.5.2 Trend of technology (modern communication trends) Figure 20 \u2013 Magnetic field communication and Zigbeecommunication comparison experiment <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure 21 \u2013 Experimental water tank for comparing magnetic field communication characteristics according to medium and distance Figure 22 \u2013 Experimental water tank filled with water and soil <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure 23 \u2013 Strength of magnetic field due to distance in air, water, and soil Table 2 \u2013 Intensity of magnetic field due to distance in air, water, and soil <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Figure 24 \u2013 Physical layer packet format Figure 25 \u2013 Preamble area type Figure 26 \u2013 Header area type <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Figure 27 \u2013 Encoding circuit of header check cyclic redundancy code Figure 28 \u2013 Payload area format Table 3 \u2013 Definition of data rate and coding <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Figure 29 \u2013 Definition of Manchester coding Figure 30 \u2013 Definition of NRZ-L coding Table 4 \u2013 Definition of frame check cyclic redundancy code <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Figure 31 \u2013 Scrambler block diagram Table 5 \u2013 Data rate and coding details <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Figure 32 \u2013 ASK modulation diagram Figure 33 \u2013 BPSK modulation diagram Figure 34 \u2013 Preamble coding and modulation process <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Figure 35 \u2013 Process of coding and modulating headers Figure 36 \u2013 Process of coding and modulating the payload Figure 37 \u2013 Magnetic fusion communication super frame structure <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Figure 38 \u2013 Magnetic field communication network structure <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Figure 39 \u2013 Magnetic fusion (power transfer) communicationnetwork super-frame structure <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | Figure 40 \u2013 Magnetic fusion (power transfer) communicationnetwork structured diagram <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Internet of things (IoT). Underwater communication technologies for IoT<\/b><\/p>\n |