{"id":245603,"date":"2024-10-19T16:09:18","date_gmt":"2024-10-19T16:09:18","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-61511-22017-tc\/"},"modified":"2024-10-25T11:09:47","modified_gmt":"2024-10-25T11:09:47","slug":"bs-en-61511-22017-tc","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-61511-22017-tc\/","title":{"rendered":"BS EN 61511-2:2017 – TC"},"content":{"rendered":"
IEC 61511-2:2016 is available as \/2 which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition. IEC 61511-2:2016 provides guidance on the specification, design, installation, operation and maintenance of SIFs and related SIS as defined in IEC 61511-1:2016. This second edition cancels and replaces the first edition published in 2003. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: – guidance examples based on all phases of the safety life cycle provided based on usage experience with IEC 61511 1st edition; – annexes replaced to address transition from software to application programming.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
239<\/td>\n | National foreword <\/td>\n<\/tr>\n | ||||||
244<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
254<\/td>\n | Figures Figure 1 \u2013 Overall framework of IEC\u00a061511\u00a0series <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | 1 Scope 2 Normative references 3 Terms, definitions, and abbreviations <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | Annexes Annex A (informative) Guidance for IEC 61511-1 A.1 Scope A.2 Normative references A.3 Terms, definitions and abbreviations A.4 Conformance to the IEC 61511-1:\u2013 A.5 Management of functional safety A.5.1 Objective A.5.2 Guidance to "Requirements" <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | A.6 Safety life-cycle requirements A.6.1 Objectives A.6.2 Guidance to "Requirements" <\/td>\n<\/tr>\n | ||||||
266<\/td>\n | A.6.3 Guidance to "Application program SIS safety life-cycle requirements" <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | A.7 Verification A.7.1 Objective A.7.2 Guidance to "Requirements" Figure A.1 \u2013 Application program V-Model <\/td>\n<\/tr>\n | ||||||
269<\/td>\n | A.8 Process hazard and risk assessment (H&RA) A.8.1 Objectives A.8.2 Guidance to \u201cRequirements" <\/td>\n<\/tr>\n | ||||||
272<\/td>\n | A.9 Allocation of safety functions to protection layers A.9.1 Objective A.9.2 Guidance to "Requirements of the allocation process" <\/td>\n<\/tr>\n | ||||||
274<\/td>\n | A.9.3 Guidance to "Requirements on the basic process control system as a protection layer" <\/td>\n<\/tr>\n | ||||||
276<\/td>\n | Figure A.2 \u2013 Independence of a BPCS protection layer and an initiating source in the BPCS <\/td>\n<\/tr>\n | ||||||
277<\/td>\n | A.9.4 Guidance to "Requirements for preventing common cause, common mode and dependent failures" Figure A.3 \u2013 Independence of two protection layers allocated to the BPCS <\/td>\n<\/tr>\n | ||||||
278<\/td>\n | A.10 SIS safety requirements specification A.10.1 Objective A.10.2 Guidance to "General requirements" A.10.3 Guidance to "SIS safety requirements" <\/td>\n<\/tr>\n | ||||||
281<\/td>\n | Figure A.4 \u2013 Relationship of system, SIS hardware, and SIS application program <\/td>\n<\/tr>\n | ||||||
282<\/td>\n | A.11 SIS design and engineering A.11.1 Objective A.11.2 Guidance to "General requirements" <\/td>\n<\/tr>\n | ||||||
289<\/td>\n | A.11.3 Guidance to "Requirements for system behaviour on detection of a fault" A.11.4 Guidance to \u201cHardware fault tolerance" <\/td>\n<\/tr>\n | ||||||
292<\/td>\n | A.11.5 Guidance to "Requirements for selection of devices" <\/td>\n<\/tr>\n | ||||||
295<\/td>\n | A.11.6 Field devices A.11.7 Interfaces <\/td>\n<\/tr>\n | ||||||
297<\/td>\n | A.11.8 Guidance to "Maintenance or testing design requirements" <\/td>\n<\/tr>\n | ||||||
298<\/td>\n | A.11.9 Guidance to "Quantification of random failure" <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | Figure A.5 \u2013 Illustration of uncertainties on a reliability parameter <\/td>\n<\/tr>\n | ||||||
303<\/td>\n | Figure A.6 \u2013 Illustration of the 70\u00a0% confidence upper bound <\/td>\n<\/tr>\n | ||||||
304<\/td>\n | A.12 SIS application program development A.12.1 Objective A.12.2 Guidance to "General requirements" Figure A.7 \u2013 Typical probabilistic distribution of target results from Monte Carlo simulation <\/td>\n<\/tr>\n | ||||||
306<\/td>\n | A.12.3 Guidance to "Application program design" <\/td>\n<\/tr>\n | ||||||
308<\/td>\n | A.12.4 Guidance to "Application program implementation" <\/td>\n<\/tr>\n | ||||||
309<\/td>\n | A.12.5 Guidance to "Requirements for application program verification (review and testing)" <\/td>\n<\/tr>\n | ||||||
312<\/td>\n | A.12.6 Guidance to "Requirements for application program methodology and tools" <\/td>\n<\/tr>\n | ||||||
315<\/td>\n | A.13 Factory acceptance testing (FAT) A.13.1 Objectives A.13.2 Guidance to "Recommendations" A.14 SIS installation and commissioning A.14.1 Objectives A.14.2 Guidance to "Requirements" <\/td>\n<\/tr>\n | ||||||
316<\/td>\n | A.15 SIS safety validation A.15.1 Objective A.15.2 Guidance to "Requirements" A.16 SIS operation and maintenance A.16.1 Objectives <\/td>\n<\/tr>\n | ||||||
317<\/td>\n | A.16.2 Guidance to "Requirements" <\/td>\n<\/tr>\n | ||||||
318<\/td>\n | A.16.3 Proof testing and inspection <\/td>\n<\/tr>\n | ||||||
320<\/td>\n | A.17 SIS modification A.17.1 Objective <\/td>\n<\/tr>\n | ||||||
321<\/td>\n | A.17.2 Guidance to "Requirements" A.18 SIS decommissioning A.18.1 Objectives A.18.2 Guidance to "Requirements" <\/td>\n<\/tr>\n | ||||||
322<\/td>\n | A.19 Information and documentation requirements A.19.1 Objectives A.19.2 Guidance to "Requirements" <\/td>\n<\/tr>\n | ||||||
323<\/td>\n | Annex B (informative) Example of SIS logic solver application program development using function block diagram B.1 General B.2 Application program development and validation philosophy <\/td>\n<\/tr>\n | ||||||
324<\/td>\n | B.3 Application description B.3.1 General B.3.2 Process description <\/td>\n<\/tr>\n | ||||||
325<\/td>\n | B.3.3 Safety instrumented functions Figure B.1 \u2013 Process flow diagram for SIF 02.01 <\/td>\n<\/tr>\n | ||||||
326<\/td>\n | B.3.4 Risk reduction and domino effects B.4 Application program safety life-cycle execution B.4.1 General B.4.2 Inputs to application program SRS development Figure B.2 \u2013 Process flow diagram for SIF 06.02 <\/td>\n<\/tr>\n | ||||||
327<\/td>\n | Figure B.3 \u2013 Functional specification of SIF02.01 and SIF 06.02 Figure B.4 \u2013 SIF 02.01 hardware functional architecture <\/td>\n<\/tr>\n | ||||||
328<\/td>\n | Figure B.5 \u2013 SIF 06.02 hardware functional architecture Figure B.6 \u2013 Hardware specification for SOV extracted from piping and instrumentation diagram <\/td>\n<\/tr>\n | ||||||
329<\/td>\n | B.4.3 Application program design and development Figure B.7 \u2013 SIF 02.01 hardware physical architecture Figure B.8 \u2013 SIF 06.02 hardware physical architecture <\/td>\n<\/tr>\n | ||||||
330<\/td>\n | Tables Table B.1 \u2013 Modes of operation specification <\/td>\n<\/tr>\n | ||||||
333<\/td>\n | Figure B.9 \u2013 Hierarchical structure of model integration <\/td>\n<\/tr>\n | ||||||
335<\/td>\n | Figure B.10 \u2013 Hierarchical structure of model integration including models of safety properties and of BPCS logic Table B.2 \u2013 State transition table <\/td>\n<\/tr>\n | ||||||
336<\/td>\n | Figure B.11 \u2013 State transition diagram <\/td>\n<\/tr>\n | ||||||
337<\/td>\n | Figure B.12 \u2013 SOV typical block diagram <\/td>\n<\/tr>\n | ||||||
338<\/td>\n | Figure B.13 \u2013 SOV typical model block diagram <\/td>\n<\/tr>\n | ||||||
340<\/td>\n | Figure B.14 \u2013 Typical model block diagram implementation \u2013 BPCS part <\/td>\n<\/tr>\n | ||||||
341<\/td>\n | Figure B.15 \u2013 SOV application program typical model implementation \u2013 SIS part <\/td>\n<\/tr>\n | ||||||
343<\/td>\n | B.4.4 Application program production B.4.5 Application program verification and testing B.4.6 Validation Figure B.16 \u2013 Complete model for final implementation model checking <\/td>\n<\/tr>\n | ||||||
344<\/td>\n | Annex C (informative) Considerations when converting from NP technologies to PE technologies <\/td>\n<\/tr>\n | ||||||
346<\/td>\n | Annex D (informative) Example of how to get from a piping and instrumentation diagram (P&ID) to application program Figure D.1 \u2013 Example of P&ID for an oil and gas separator <\/td>\n<\/tr>\n | ||||||
347<\/td>\n | Figure D.2 \u2013 Example of (part of) an ESD cause & effect diagram (C&E) <\/td>\n<\/tr>\n | ||||||
348<\/td>\n | Figure D.3 \u2013 Example of (part of) an application program in a safety PLC function block programming <\/td>\n<\/tr>\n | ||||||
349<\/td>\n | Annex E (informative) Methods and tools for application programming E.1 Typical toolset for application programming <\/td>\n<\/tr>\n | ||||||
350<\/td>\n | E.2 Rules and constraints for application program design E.3 Rules and constraints for application programming <\/td>\n<\/tr>\n | ||||||
352<\/td>\n | Annex F (informative) Example SIS project illustrating each phase of the safety life cycle with application program development using relay ladder language F.1 Overview F.2 Project definition F.2.1 General <\/td>\n<\/tr>\n | ||||||
353<\/td>\n | F.2.2 Conceptual planning F.2.3 Process hazards analysis F.3 Simplified process description <\/td>\n<\/tr>\n | ||||||
354<\/td>\n | Figure F.1 \u2013 Simplified flow diagram: the PVC process <\/td>\n<\/tr>\n | ||||||
355<\/td>\n | F.4 Preliminary design F.5 IEC 61511 application F.5.1 General <\/td>\n<\/tr>\n | ||||||
356<\/td>\n | Figure F.2 \u2013 SIS safety life-cycle phases and FSA stages <\/td>\n<\/tr>\n | ||||||
357<\/td>\n | Table F.1 \u2013 SIS safety life-cycle overview <\/td>\n<\/tr>\n | ||||||
359<\/td>\n | F.5.2 Step F.1: Hazard & risk assessment F.5.3 Hazard identification F.5.4 Preliminary hazard evaluation F.5.5 Accident history Table F.2 \u2013 SIS safety life-cycle \u2013 Box 1 <\/td>\n<\/tr>\n | ||||||
361<\/td>\n | Table F.3 \u2013 Some physical properties of vinyl chloride <\/td>\n<\/tr>\n | ||||||
362<\/td>\n | F.6 Preliminary process design safety considerations F.7 Recognized process hazards <\/td>\n<\/tr>\n | ||||||
363<\/td>\n | F.8 Process design definitions strategy <\/td>\n<\/tr>\n | ||||||
365<\/td>\n | Figure F.3 \u2013 Example of the preliminary P&ID for PVC reactor unit <\/td>\n<\/tr>\n | ||||||
366<\/td>\n | F.9 Preliminary hazard assessment F.9.1 General <\/td>\n<\/tr>\n | ||||||
367<\/td>\n | Table F.4 \u2013 What-If\/Checklist <\/td>\n<\/tr>\n | ||||||
368<\/td>\n | Table F.5 \u2013 HAZOP <\/td>\n<\/tr>\n | ||||||
369<\/td>\n | Table F.6 \u2013 Partial summary of hazard assessment for SIF strategy development <\/td>\n<\/tr>\n | ||||||
370<\/td>\n | F.9.2 Step F.2: Allocation of safety functions <\/td>\n<\/tr>\n | ||||||
371<\/td>\n | F.10 SIF safety integrity level determination F.11 Layer of protection analysis (LOPA) applied to example Table F.7 \u2013 SIS safety life-cycle \u2013 Box 2 <\/td>\n<\/tr>\n | ||||||
372<\/td>\n | F.12 Tolerable risk criteria <\/td>\n<\/tr>\n | ||||||
373<\/td>\n | Table F.8 \u2013 Tolerable risk ranking <\/td>\n<\/tr>\n | ||||||
374<\/td>\n | Table F.9 \u2013 VCM reactor example: LOPA based integrity level <\/td>\n<\/tr>\n | ||||||
375<\/td>\n | F.13 Step F.3: SIS safety requirements specifications F.13.1 Overview F.13.2 Input requirements Table F.10 \u2013 SIS safety life-cycle \u2013 Box 3 Table F.11 \u2013 Safety instrumented functions and SILs <\/td>\n<\/tr>\n | ||||||
376<\/td>\n | F.13.3 Safety functional requirements Table F.12 \u2013 Functional relationship of I\/O for the SIF(s) Table F.13 \u2013 SIS sensors, normal operating range & trip points <\/td>\n<\/tr>\n | ||||||
377<\/td>\n | F.13.4 Safety integrity requirements <\/td>\n<\/tr>\n | ||||||
378<\/td>\n | F.14 Functional description and conceptual design F.14.1 Narrative for example reactor system logic <\/td>\n<\/tr>\n | ||||||
379<\/td>\n | F.15 SIL verification calculations Table F.14 \u2013 Cause and effect diagram <\/td>\n<\/tr>\n | ||||||
380<\/td>\n | Table F.15 \u2013 MTTFd figures of SIS F.1 devices <\/td>\n<\/tr>\n | ||||||
381<\/td>\n | Figure F.4 \u2013 SIF S-1 Bubble diagram showing the PFDavg of each SIS device <\/td>\n<\/tr>\n | ||||||
382<\/td>\n | Figure F.5 \u2013 S-1 Fault tree <\/td>\n<\/tr>\n | ||||||
383<\/td>\n | Figure F.6 \u2013 SIF S-2 Bubble diagram showing the PFDavg of each SIS device <\/td>\n<\/tr>\n | ||||||
384<\/td>\n | Figure F.7 \u2013 SIF S-2 fault tree <\/td>\n<\/tr>\n | ||||||
385<\/td>\n | Figure F.8 \u2013 SIF S-3 Bubble diagram showing the PFDavg of each SIS device <\/td>\n<\/tr>\n | ||||||
386<\/td>\n | F.16 Application program requirements Figure F.9 \u2013 SIF S-3 fault tree <\/td>\n<\/tr>\n | ||||||
387<\/td>\n | Figure F.10 \u2013 P&ID for PVC reactor unit SIF <\/td>\n<\/tr>\n | ||||||
388<\/td>\n | Figure F.11 \u2013 Legend (1 of 5) <\/td>\n<\/tr>\n | ||||||
393<\/td>\n | F.17 Step F.4: SIS safety life-cycle F.18 Technology and device selection F.18.1 General F.18.2 Logic solver Table F.16 \u2013 SIS safety life-cycle \u2013 Box 4 <\/td>\n<\/tr>\n | ||||||
394<\/td>\n | F.18.3 Sensors F.18.4 Final elements F.18.5 Solenoid valves <\/td>\n<\/tr>\n | ||||||
395<\/td>\n | F.18.6 Emergency vent valves F.18.7 Modulating valves F.18.8 Bypass valves F.18.9 Human-machine interfaces (HMIs) <\/td>\n<\/tr>\n | ||||||
396<\/td>\n | F.18.10 Separation <\/td>\n<\/tr>\n | ||||||
397<\/td>\n | F.19 Common cause and systematic failures F.19.1 General F.19.2 Diversity F.19.3 Specification errors F.19.4 Hardware design errors <\/td>\n<\/tr>\n | ||||||
398<\/td>\n | F.19.5 Software design errors F.19.6 Environmental overstress F.19.7 Temperature F.19.8 Humidity <\/td>\n<\/tr>\n | ||||||
399<\/td>\n | F.19.9 Contaminants F.19.10 Vibration F.19.11 Grounding F.19.12 Power line conditioning F.19.13 Electro-magnetic compatibility (EMC) <\/td>\n<\/tr>\n | ||||||
400<\/td>\n | F.19.14 Utility sources <\/td>\n<\/tr>\n | ||||||
401<\/td>\n | F.19.15 Sensors F.19.16 Process corrosion or fouling F.19.17 Maintenance F.19.18 Susceptibility to mis-operation F.19.19 SIS architecture <\/td>\n<\/tr>\n | ||||||
402<\/td>\n | F.20 SIS application program design features Figure F.12 \u2013 SIS for the VCM reactor <\/td>\n<\/tr>\n | ||||||
403<\/td>\n | F.21 Wiring practices F.22 Security <\/td>\n<\/tr>\n | ||||||
404<\/td>\n | F.23 Step F.5: SIS installation, commissioning, validation F.24 Installation Table F.17 \u2013 SIS safety life-cycle \u2013 Box 5 <\/td>\n<\/tr>\n | ||||||
405<\/td>\n | F.25 Commissioning <\/td>\n<\/tr>\n | ||||||
406<\/td>\n | F.26 Documentation F.27 Validation <\/td>\n<\/tr>\n | ||||||
407<\/td>\n | F.28 Testing <\/td>\n<\/tr>\n | ||||||
408<\/td>\n | Table F.18 \u2013 List of instrument types and testing procedures used <\/td>\n<\/tr>\n | ||||||
420<\/td>\n | F.29 Step F.6: SIS operation and maintenance Table F.19 \u2013 Interlock check procedure bypass\/simulation check sheet Table F.20 \u2013 SIS safety life-cycle \u2013 Box 6 <\/td>\n<\/tr>\n | ||||||
421<\/td>\n | Table F.21 \u2013 SIS trip log Table F.22 \u2013 SIS device failure log <\/td>\n<\/tr>\n | ||||||
423<\/td>\n | F.30 Step F.7: SIS Modification F.31 Step F.8: SIS decommissioning F.32 Step F.9: SIS verification Table F.23 \u2013 SIS safety life-cycle \u2013 Box 7 Table F.24 \u2013 SIS safety life-cycle \u2013 Box 8 <\/td>\n<\/tr>\n | ||||||
424<\/td>\n | F.33 Step F.10: Management of functional safety and SIS FSA Table F.25 \u2013 SIS safety life-cycle \u2013 Box 9 Table F.26 \u2013 SIS safety life-cycle \u2013 Box 10 <\/td>\n<\/tr>\n | ||||||
425<\/td>\n | F.34 Management of functional safety F.34.1 General F.34.2 Competence of personnel F.35 Functional safety assessment <\/td>\n<\/tr>\n | ||||||
426<\/td>\n | Annex G (informative) Guidance on developing application programming practices G.1 Purpose of this guidance G.2 Generic safe application programming attributes G.3 Reliability G.3.1 General <\/td>\n<\/tr>\n | ||||||
427<\/td>\n | G.3.2 Predictability of memory utilisation <\/td>\n<\/tr>\n | ||||||
428<\/td>\n | G.3.3 Predictability of control flow <\/td>\n<\/tr>\n | ||||||
430<\/td>\n | G.3.4 Accounting for precision and accuracy <\/td>\n<\/tr>\n | ||||||
432<\/td>\n | G.3.5 Predictability of timing G.4 Predictability of mathematical or logical result <\/td>\n<\/tr>\n | ||||||
433<\/td>\n | G.5 Robustness G.5.1 General G.5.2 Controlling use of diversity <\/td>\n<\/tr>\n | ||||||
434<\/td>\n | G.5.3 Controlling use of exception handling <\/td>\n<\/tr>\n | ||||||
435<\/td>\n | G.5.4 Checking input and output <\/td>\n<\/tr>\n | ||||||
436<\/td>\n | G.6 Traceability G.6.1 General G.6.2 Controlling use of built-in functions G.6.3 Controlling use of compiled libraries G.7 Maintainability G.7.1 General <\/td>\n<\/tr>\n | ||||||
437<\/td>\n | G.7.2 Readability <\/td>\n<\/tr>\n | ||||||
440<\/td>\n | G.7.3 Data abstraction <\/td>\n<\/tr>\n | ||||||
441<\/td>\n | G.7.4 Functional cohesiveness G.7.5 Malleability G.7.6 Portability <\/td>\n<\/tr>\n | ||||||
443<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Tracked Changes. Functional safety. Safety instrumented systems for the process industry sector – Guidelines for the application of IEC 61511-1<\/b><\/p>\n |