{"id":250319,"date":"2024-10-19T16:30:43","date_gmt":"2024-10-19T16:30:43","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-ts-62600-3012019\/"},"modified":"2024-10-25T11:44:02","modified_gmt":"2024-10-25T11:44:02","slug":"bsi-pd-iec-ts-62600-3012019","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-ts-62600-3012019\/","title":{"rendered":"BSI PD IEC TS 62600-301:2019"},"content":{"rendered":"
This part of IEC 62600 provides:<\/p>\n
Methodologies that ensure consistency and accuracy in the determination of the theoretical river energy resource at sites that may be suitable for the installation of River Energy Converters (RECs);<\/p>\n<\/li>\n
Methodologies for producing a standard current speed distribution based on measured, historical, or numerical data, or a combination thereof, to be used in conjunction with an appropriate river energy power performance assessment;<\/p>\n<\/li>\n
Allowable data collection methods and\/or modelling techniques; and<\/p>\n<\/li>\n
A framework for reporting results.<\/p>\n<\/li>\n<\/ul>\n
The document explicitly excludes:<\/p>\n
Technical or practical resource assessments;<\/p>\n<\/li>\n
Resource characterisation;<\/p>\n<\/li>\n
Power performance assessment of river energy converters; and<\/p>\n<\/li>\n
Environmental impact studies, assessments, or similar.<\/p>\n<\/li>\n<\/ul>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 4 Symbols, units and abbreviated terms 4.1 Symbols and units 4.2 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 5 Methodology overview 5.1 Study classification 5.2 Project location identification 5.3 Resource definition 5.4 Methodology 5.4.1 General <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 5.4.2 Flow duration curves 5.4.3 Velocity duration curves <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | Figures Figure 1 \u2013 Flowchart outlining the methodology for a resource assessment <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | Table 1 \u2013 Outline of measurements <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 5.4.4 Energy production 6 Flow Duration Curves 6.1 General 6.2 Measurement-based Flow Duration Curve <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 6.3 Hydrologic modelling 6.3.1 General 6.3.2 Stochastic modelling Figure 2 \u2013 Types of hydrologic models for simulating discharge <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 6.3.3 Deterministic modelling <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 6.4 Computing Flow Duration Curves <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Figure 3 \u2013 Example FDC (curve) and assumed non-uniform discretisation (circles) <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 7 Velocity Duration Curves 7.1 General 7.2 Measurement-based Velocity Duration Curve <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 7.3 Hydrodynamic-model-based Velocity Duration Curve 7.3.1 General 7.3.2 Model selection <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 7.3.3 Model domain 7.3.4 Grid resolution <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 7.3.5 Model inputs <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 7.3.6 Boundary conditions and forcing 7.3.7 Field-data requirements <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 7.3.9 Calibration <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 7.3.10 Validation 7.3.11 Energy extraction <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 7.3.12 Computation of model-based velocities <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 7.3.13 Calculating the Velocity Duration Curve Figure 4 \u2013 Example REC power-weighted speed versus discharge relationship using discretised discharge values (circles) in Figure 3 <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 8 Reporting requirements 8.1 General Figure 5 \u2013 Example VDC using the transfer function derived from the curve fit shown in Figure 4 and the full FDC shown in Figure 3 <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 8.2 Technical report 8.2.1 General 8.2.2 Development of the Flow Duration Curve <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 8.2.3 Development of the Velocity Duration Curve 8.2.4 AEP calculation 8.2.5 Additional reporting <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 8.3 Digital database 8.4 Test equipment report 8.5 Measurement procedure report 8.6 Deviations from the procedure <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Annex A (normative) Guidelines for field data measurements A.1 Bathymetry A.2 Water level A.3 Discharge A.3.1 General <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | A.3.2 Stage-discharge relationship A.4 Current profiler measurements A.4.1 General A.4.2 Fixed-location velocity profile <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | A.4.3 Discharge and velocity transect survey A.4.4 Instrument configuration <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | A.4.5 Correcting for clock drift A.4.6 Depth quality control A.4.7 Velocity quality control A.5 Turbulence <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Annex B (informative) Calculation of energy production B.1 General B.2 Energy production Figure B.1 \u2013Power exceedance probabilities <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Annex C (normative) Evaluation of uncertainty C.1 General C.2 Uncertainty analysis <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | C.3 Modelling uncertainty Table C.1 \u2212 List of uncertainty components <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Marine energy. Wave, tidal and other water current converters – River energy resource assessment<\/b><\/p>\n |