{"id":390913,"date":"2024-10-20T03:56:54","date_gmt":"2024-10-20T03:56:54","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-tr-61850-90-142021\/"},"modified":"2024-10-26T07:17:48","modified_gmt":"2024-10-26T07:17:48","slug":"bsi-pd-iec-tr-61850-90-142021","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-tr-61850-90-142021\/","title":{"rendered":"BSI PD IEC TR 61850-90-14:2021"},"content":{"rendered":"

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nundefined <\/td>\n<\/tr>\n
4<\/td>\nCONTENTS <\/td>\n<\/tr>\n
13<\/td>\nFOREWORD <\/td>\n<\/tr>\n
15<\/td>\nINTRODUCTION <\/td>\n<\/tr>\n
16<\/td>\n1 Scope
1.1 Namespace name and version <\/td>\n<\/tr>\n
17<\/td>\n1.2 Code Component distribution
Tables
Table 1 \u2013 Attributes of (Tr)IEC 61850-90-14:2020A namespace
Table 2 \u2013 Tracking information of (Tr)IEC 61850-90-14:2020A namespace building-up <\/td>\n<\/tr>\n
18<\/td>\n2 Normative references <\/td>\n<\/tr>\n
19<\/td>\n3 Terms, definitions, variable symbols and abbreviated terms
3.1 Terms and definitions
3.2 Variable symbols <\/td>\n<\/tr>\n
20<\/td>\n3.3 Abbreviated terms <\/td>\n<\/tr>\n
22<\/td>\n4 FACTS Controllers and power conversion definition and specific requirements \u2013 Definitions of FACTS and power conversions
4.1 Flexible AC transmission system
4.1.1 General
4.1.2 Examples of FACTS for shunt compensation
4.1.3 Examples of series compensation <\/td>\n<\/tr>\n
23<\/td>\n4.2 Power conversions systems
5 Scope clarification and definition
5.1 General
Figures
Figure 1 \u2013 Conceptual view of communication paths considered in this report <\/td>\n<\/tr>\n
24<\/td>\n5.2 Communication requirements and data flow
5.2.1 General
Figure 2 \u2013 Levels and logical interfaces in substation automation systems <\/td>\n<\/tr>\n
25<\/td>\n5.2.2 Mapping to interfaces defined in IEC 61850-5
Figure 3 \u2013 Data flow of a FACTS \/ Power Conversion controller <\/td>\n<\/tr>\n
26<\/td>\n5.3 SCL modelling requirements
6 Shared use cases for FACTS controllers and Power Conversion
6.1 Commonly used actors
Figure 4 \u2013 Shared use cases for FACTS controllers and Power Conversion <\/td>\n<\/tr>\n
27<\/td>\nTable 3 \u2013 Actors used in use cases <\/td>\n<\/tr>\n
28<\/td>\n6.2 Use case: Control system redundancy
6.2.1 Communication redundancy
6.2.2 Functional application redundancy
Figure 5 \u2013 Hierarchal view of commonly used actors <\/td>\n<\/tr>\n
29<\/td>\n6.3 Use case: Control location and authority
Figure 6 \u2013 Typical redundant FACTS\/Power Conversion control system setup <\/td>\n<\/tr>\n
30<\/td>\nFigure 7 \u2013 Authority for control of devices fromdifferent control levels and locations <\/td>\n<\/tr>\n
31<\/td>\n6.4 Use case: System status and generic sequence processing
6.4.1 General
Figure 8 \u2013 Typical scheme for implementation of control authority for function groups <\/td>\n<\/tr>\n
32<\/td>\nFigure 9 \u2013 System status \/ generic sequence processing <\/td>\n<\/tr>\n
33<\/td>\nTable 4 \u2013 Use case: System status and generic sequence processing <\/td>\n<\/tr>\n
35<\/td>\n6.4.2 ASEQ Application Overview <\/td>\n<\/tr>\n
36<\/td>\n6.4.3 Application example HVDC
Figure 10 \u2013 ASEQ Application Overview (using the most important Data Objects) <\/td>\n<\/tr>\n
37<\/td>\nFigure 11 \u2013 Exemplary sequence diagram, not applicable to all use cases <\/td>\n<\/tr>\n
39<\/td>\n6.4.4 Application example Shunt connected FACTS device
Figure 12 \u2013 Operating states of a FACTS shunt device <\/td>\n<\/tr>\n
41<\/td>\nFigure 13 \u2013 Use case diagrams of State use case <\/td>\n<\/tr>\n
42<\/td>\n6.5 Use case: Cooling system
6.5.1 General
Table 5 \u2013 Use case: State <\/td>\n<\/tr>\n
43<\/td>\nFigure 14 \u2013 Cooling control use cases
Table 6 \u2013 Use case: Cooling system <\/td>\n<\/tr>\n
45<\/td>\n6.5.2 List of logical nodes for modelling of a Water based cooling system
6.5.3 Example of modelling a cooling system
Table 7 \u2013 Logical nodes for modelling a water-based cooling system <\/td>\n<\/tr>\n
46<\/td>\nFigure 15 \u2013 Cooling control modelling example <\/td>\n<\/tr>\n
47<\/td>\n6.6 Use case: Control and supervision of Harmonic filter
Figure 16 \u2013 Harmonic filter control and supervision <\/td>\n<\/tr>\n
48<\/td>\n6.7 Use case: Control of external devices as part of automatic reactive power control
6.7.1 General
Table 8 \u2013 Use case: Control and supervision of Harmonic filter <\/td>\n<\/tr>\n
49<\/td>\nFigure 17 \u2013 Use case Control of external reactive components <\/td>\n<\/tr>\n
50<\/td>\nTable 9 \u2013 Use case: Control of external banks mode <\/td>\n<\/tr>\n
51<\/td>\n6.7.2 Modelling example for external device control of a FACTS shunt device
Figure 18 \u2013 Modelling external banks for reactive power optimization.
Table 10 \u2013 Process data for Control of external banks mode <\/td>\n<\/tr>\n
52<\/td>\n6.8 Use case: Converter status during degraded operation
Figure 19 \u2013 Use case Converter status <\/td>\n<\/tr>\n
53<\/td>\n6.9 Use case: Power Semiconductor application monitoring
6.9.1 General
Figure 20 \u2013 Example of a hierarchical arrangement of power electronic units
Table 11 \u2013 Use case: Get Converter Status <\/td>\n<\/tr>\n
54<\/td>\nFigure 21 \u2013 Arrangement of 12 thyristor valvesin a 12-pulse converter configuration <\/td>\n<\/tr>\n
55<\/td>\nFigure 22 \u2013 Use cases for semiconductor application monitoring
Table 12 \u2013 Use case: Semiconductor application monitoring <\/td>\n<\/tr>\n
57<\/td>\n6.9.2 Equipment Indications and Properties
Table 13 \u2013 Thyristor controlled reactive components
Table 14 \u2013 Process information for Thyristor controlled reactive component <\/td>\n<\/tr>\n
58<\/td>\n6.9.3 Modelling requirements, results, conclusion
6.10 Use case: Coordinated control between FACTS and other Power Conversion devices
6.10.1 General
Figure 23 \u2013 Schematic view of two SVC devices connected in parallel. <\/td>\n<\/tr>\n
59<\/td>\nFigure 24 \u2013 Coordination between two FACTS \/ Power Conversion
Figure 25 \u2013 Use case diagram for coordinated FACTS device operation <\/td>\n<\/tr>\n
60<\/td>\n6.10.2 Use case descriptions
Figure 26 \u2013 Coordination signals between two SVCs
Table 15 \u2013 Coordinated FACTS device operation use case <\/td>\n<\/tr>\n
61<\/td>\n6.10.3 Optimized signal list and process information for modelling
Figure 27 \u2013 Optimized signal list for IEC 61850 <\/td>\n<\/tr>\n
62<\/td>\n6.11 FACTS and Power Conversion Protection
6.11.1 General
6.11.2 Use case Protective action
Table 16 \u2013 Process information for coordinated control mode <\/td>\n<\/tr>\n
63<\/td>\nFigure 28 \u2013 Use cases for Control System Protective Actions
Table 17 \u2013 Use cases for Control System Protective Actions <\/td>\n<\/tr>\n
64<\/td>\n6.11.3 Modelling summary
7 FACTS
7.1 General <\/td>\n<\/tr>\n
65<\/td>\n7.2 Shunt connected FACTS devices
7.2.1 General
7.2.2 Overview
Figure 29 \u2013 V-I diagram of a generic SVC
Table 18 \u2013 Classification of FACTS Controllers <\/td>\n<\/tr>\n
66<\/td>\n7.2.3 Use cases for Shunt Connected FACTS device
Figure 30 \u2013 V-I diagram of a generic STATCOM
Figure 31 \u2013 Use cases for substation control of a shunt connected FACTS device. <\/td>\n<\/tr>\n
67<\/td>\nTable 19 \u2013 Main use cases of FACTS Shunt device <\/td>\n<\/tr>\n
68<\/td>\nFigure 32 \u2013 Example of operating states of a FACTS shunt device
Figure 33 \u2013 Example of control modes of a shunt connected FACTS device visualized as a state machine <\/td>\n<\/tr>\n
69<\/td>\nFigure 34 \u2013 Use cases for changing states of FACTS device <\/td>\n<\/tr>\n
70<\/td>\nFigure 35 \u2013 Change of control mode use case
Table 20 \u2013 Changing states of FACTS device use cases <\/td>\n<\/tr>\n
71<\/td>\nTable 21 \u2013 Main control functions
Table 22 \u2013 Supplementary control functions
Table 23 \u2013 Additional control mode functions
Table 24 \u2013 Use case: Control Mode selection <\/td>\n<\/tr>\n
72<\/td>\nFigure 36 \u2013 Sub-use cases of Configuration use case
Table 25 \u2013 Change Control mode process data <\/td>\n<\/tr>\n
73<\/td>\nTable 26 \u2013 Use case: Configuration of control mode <\/td>\n<\/tr>\n
74<\/td>\nFigure 37 \u2013 Automatic Reactive Power Control use case
Table 27 \u2013 Automatic Reactive Power Control process data <\/td>\n<\/tr>\n
75<\/td>\nFigure 38 \u2013 Non-automatic control mode use case
Table 28 \u2013 Non-automatic control mode use case
Table 29 \u2013 Non-automatic control mode setpoints <\/td>\n<\/tr>\n
76<\/td>\nFigure 39 \u2013 Simplified fixed reactive power regulator block diagram
Figure 40 \u2013 Simplified voltage regulator block diagramof automatic voltage control mode for an SVC
Table 30 \u2013 Reactive power control mode process data <\/td>\n<\/tr>\n
77<\/td>\nTable 31 \u2013 Additional functions in Automatic Voltage Control mode
Table 32 \u2013 Voltage Control mode process data <\/td>\n<\/tr>\n
78<\/td>\nFigure 41 \u2013 Shunt connected FACTS device operating characteristicwith slow susceptance\/reactive power regulator
Table 33 \u2013 Process data for slow susceptance regulator modeor reactive power regulator <\/td>\n<\/tr>\n
79<\/td>\nFigure 42 \u2013 Example of automatic voltage control system with additional reference signal for POD
Table 34 \u2013 POD mode settings and controls <\/td>\n<\/tr>\n
80<\/td>\nFigure 43 \u2013 Activation of Gain Optimizer Function
Figure 44 \u2013 Reset Gain Command Interaction Diagram <\/td>\n<\/tr>\n
81<\/td>\nTable 35 \u2013 Use case: Gain
Table 36 \u2013 Gain Supervision mode data objects
Table 37 \u2013 Gain Optimizer mode data objects <\/td>\n<\/tr>\n
82<\/td>\nTable 38 \u2013 Protective Control Functions of SVC use cases <\/td>\n<\/tr>\n
83<\/td>\n7.3 Series connected FACTS devices
7.3.1 Overview
7.3.2 Use case of Series Compensation
Table 39 \u2013 Protective Control Functions of a VSC use cases <\/td>\n<\/tr>\n
84<\/td>\nFigure 45 \u2013 Series Compensation Use case
Table 40 \u2013 Use case: Series Compensation <\/td>\n<\/tr>\n
85<\/td>\nFigure 46 \u2013 Use cases for Fixed Series Capacitors <\/td>\n<\/tr>\n
86<\/td>\nFigure 47 \u2013 Use case for Capacitor Discharge function
Table 41 \u2013 Use case: Fixed Series compensation <\/td>\n<\/tr>\n
87<\/td>\nFigure 48 \u2013 Use case for By-passing
Table 42 \u2013 Use case: Capacitor Discharge Function <\/td>\n<\/tr>\n
88<\/td>\nTable 43 \u2013 Bypassing of series capacitor <\/td>\n<\/tr>\n
89<\/td>\nFigure 49 \u2013 Sub use cases for Lock-out use case
Table 44 \u2013 Use case: Lock-out and temporary block insertion <\/td>\n<\/tr>\n
91<\/td>\nFigure 50 \u2013 Sub use cases for auto reinsertion <\/td>\n<\/tr>\n
92<\/td>\nFigure 51 \u2013 Interaction of Automatic Reinsertion function with other functions
Table 45 \u2013 Use case: Auto reinsertion <\/td>\n<\/tr>\n
93<\/td>\nFigure 52 \u2013 Example of states in Automatic reinsertion function <\/td>\n<\/tr>\n
94<\/td>\nTable 46 \u2013 Transition description for Figure 55 <\/td>\n<\/tr>\n
95<\/td>\nFigure 53 \u2013 SLD of Fast Protective Equipment <\/td>\n<\/tr>\n
96<\/td>\nFigure 54 \u2013 Use case for Fast Protective equipment <\/td>\n<\/tr>\n
97<\/td>\nFigure 55 \u2013 SLD symbol for Metal Oxide Varistor
Table 47 \u2013 Use case: Fast Protective Equipment <\/td>\n<\/tr>\n
98<\/td>\nFigure 56 \u2013 Zink Oxide Varistor use case <\/td>\n<\/tr>\n
99<\/td>\nFigure 57 \u2013 MSSR Use case diagram
Table 48 \u2013 Use case: Zink Oxide Varistor <\/td>\n<\/tr>\n
100<\/td>\nTable 49 \u2013 Use case: MSSR
Table 50 \u2013 Indications and measurements <\/td>\n<\/tr>\n
101<\/td>\n7.3.3 Series Capacitors protections
Figure 58 \u2013 Additional use cases for TCSC
Table 51 \u2013 Use case: TCSC <\/td>\n<\/tr>\n
102<\/td>\nTable 52 \u2013 Overview of typical series capacitor bank protections,based on IEC 60143-2 <\/td>\n<\/tr>\n
103<\/td>\nFigure 59 \u2013 SC Protection function Interface <\/td>\n<\/tr>\n
104<\/td>\nTable 53 \u2013 Use case: SC protection functions <\/td>\n<\/tr>\n
105<\/td>\nTable 54 \u2013 Series protections modelling guideline <\/td>\n<\/tr>\n
106<\/td>\n8 Power Conversion
8.1 Power Converters
8.1.1 Overview
Figure 60 \u2013 Varistor Overload Protection use case
Figure 61 \u2013 Varistor Failure Protection use case <\/td>\n<\/tr>\n
107<\/td>\n8.1.2 Power converter use cases with signal and data item descriptions
Figure 62 \u2013 Generic application of Power Conversion <\/td>\n<\/tr>\n
108<\/td>\nFigure 63 \u2013 Use Active \/ reactive power operation mode selection
Table 55 \u2013 Use case: Active \/ reactive power operation mode selection <\/td>\n<\/tr>\n
110<\/td>\nFigure 64 \u2013 Active power control use case <\/td>\n<\/tr>\n
111<\/td>\nTable 56 \u2013 Use case: Active power control <\/td>\n<\/tr>\n
112<\/td>\nFigure 65 \u2013 P-f characteristic <\/td>\n<\/tr>\n
113<\/td>\nFigure 66 \u2013 P-V characteristic
Table 57 \u2013 New data items for P-f-characteristics <\/td>\n<\/tr>\n
114<\/td>\nFigure 67 \u2013 Example: Simple 4-point P-DCVol characteristic
Table 58 \u2013 New data items for P-V <\/td>\n<\/tr>\n
115<\/td>\nFigure 68 \u2013 Example: Sophisticated 9-point P-DCVol characteristic
Table 59 \u2013 New data items for P-DCVol <\/td>\n<\/tr>\n
116<\/td>\nFigure 69 \u2013 P_Fixed
Table 60 \u2013 New data items for fixed active power
Table 61 \u2013 New data items for fixed DC current
Table 62 \u2013 New data items for Active power (general) <\/td>\n<\/tr>\n
117<\/td>\nFigure 70 \u2013 Reactive power control use case <\/td>\n<\/tr>\n
118<\/td>\nFigure 71 \u2013 Q-V characteristic
Table 63 \u2013 Reactive Power control use case (Power Conversion) <\/td>\n<\/tr>\n
119<\/td>\nFigure 72 \u2013 Q_Fixed
Table 64 \u2013 New data items for Q-V
Table 65 \u2013 New data items for Q_fixed <\/td>\n<\/tr>\n
120<\/td>\nFigure 73 \u2013 Phi_Fixed
Table 66 \u2013 New data items for Q_Band
Table 67 \u2013 New data items for Phi_Fixed <\/td>\n<\/tr>\n
121<\/td>\nFigure 74 \u2013 V_Band
Table 68 \u2013 New data items for V_Band
Table 69 \u2013 New data items for Reactive power (general), <\/td>\n<\/tr>\n
122<\/td>\nTable 70 \u2013 Use case Reactive power (Power Conversion) <\/td>\n<\/tr>\n
123<\/td>\nFigure 75 \u2013 Use case <\/td>\n<\/tr>\n
124<\/td>\n8.2 HVDC
8.2.1 Overview
Table 71 \u2013 Intermediate DC circuit use case <\/td>\n<\/tr>\n
125<\/td>\n8.2.2 HVDC use cases with signal and data item descriptions
Figure 76 \u2013 Typical HVDC setup <\/td>\n<\/tr>\n
126<\/td>\nFigure 77 \u2013 Use case Power direction change <\/td>\n<\/tr>\n
127<\/td>\nTable 72 \u2013 Use case Power direction change <\/td>\n<\/tr>\n
128<\/td>\nFigure 78 \u2013 Use case Run-up\/Run-back modules <\/td>\n<\/tr>\n
129<\/td>\nTable 73 \u2013 Use case Run-up\/Run-back modules <\/td>\n<\/tr>\n
130<\/td>\nFigure 79 \u2013 General AEPC functional characteristic <\/td>\n<\/tr>\n
131<\/td>\nFigure 80 \u2013 Use case Automatic Emergency Power Control
Table 74 \u2013 Use case Automatic Emergency Power Control <\/td>\n<\/tr>\n
133<\/td>\nTable 75 \u2013 AEPC data modelling example <\/td>\n<\/tr>\n
135<\/td>\nFigure 81 \u2013 DC Line fault recovery sequence <\/td>\n<\/tr>\n
136<\/td>\nTable 76 \u2013 Use case: DC Line fault recovery sequence <\/td>\n<\/tr>\n
138<\/td>\nFigure 82 \u2013 Examples for typical HVDC DC-Yard configurations <\/td>\n<\/tr>\n
139<\/td>\nFigure 83 \u2013 DC Yard configuration
Table 77 \u2013 Use case: DC Yard configuration <\/td>\n<\/tr>\n
140<\/td>\nFigure 84 \u2013 Coordinated mode switchover <\/td>\n<\/tr>\n
141<\/td>\nTable 78 \u2013 Use case: Coordinated mode switchover <\/td>\n<\/tr>\n
142<\/td>\nFigure 85 \u2013 Function mode switchover <\/td>\n<\/tr>\n
143<\/td>\nTable 79 \u2013 Use case: Function mode switchover <\/td>\n<\/tr>\n
147<\/td>\nFigure 86 \u2013 Tap changer control and supervision
Table 80 \u2013 Use case: Tap changer control and supervision <\/td>\n<\/tr>\n
149<\/td>\n8.3 SFC \u2013 Static Frequency Converter
8.3.1 Overview
8.3.2 SFC use cases with signal and data item descriptions
Figure 87 \u2013 Typical SFC setup <\/td>\n<\/tr>\n
150<\/td>\nFigure 88 \u2013 Control by external reference
Table 81 \u2013 Use case: Control by external reference <\/td>\n<\/tr>\n
151<\/td>\n9 Data model
9.1 Abbreviated terms used in data object names
9.2 Logical node preliminaries
9.2.1 Package LogicalNodes_90_14
Table 82 \u2013 Normative abbreviations for data object names <\/td>\n<\/tr>\n
152<\/td>\nFigure 89 \u2013 Class diagram LogicalNodes_90_14::LogicalNodes_90_14 <\/td>\n<\/tr>\n
153<\/td>\nFigure 90 \u2013 Class diagram AbstractLNs::AbstractLNs <\/td>\n<\/tr>\n
154<\/td>\nTable 83 \u2013 Data objects of FACTSandPowerConversionLN <\/td>\n<\/tr>\n
155<\/td>\nTable 84 \u2013 Data objects of ReactiveComponentInterfaceLN <\/td>\n<\/tr>\n
156<\/td>\nTable 85 \u2013 Data objects of EmergencyPowerControl_PowerRunUpRunBackLN <\/td>\n<\/tr>\n
157<\/td>\nFigure 91 \u2013 Class diagram LNGroupA::LNGroupANew <\/td>\n<\/tr>\n
158<\/td>\nFigure 92 \u2013 Class diagram LNGroupA::LNGroupAExt <\/td>\n<\/tr>\n
159<\/td>\nTable 86 \u2013 Data objects of ARCOExt <\/td>\n<\/tr>\n
161<\/td>\nTable 87 \u2013 Data objects of AFLK <\/td>\n<\/tr>\n
162<\/td>\nTable 88 \u2013 Data objects of AMSR <\/td>\n<\/tr>\n
164<\/td>\nTable 89 \u2013 Data objects of APOD <\/td>\n<\/tr>\n
165<\/td>\nTable 90 \u2013 Data objects of AEPC <\/td>\n<\/tr>\n
167<\/td>\nTable 91 \u2013 Data objects of ARUB <\/td>\n<\/tr>\n
168<\/td>\nTable 92 \u2013 Data objects of ASEQ <\/td>\n<\/tr>\n
170<\/td>\nTable 93 \u2013 Data objects of ATCCExt <\/td>\n<\/tr>\n
173<\/td>\nTable 94 \u2013 Data objects of ARPC <\/td>\n<\/tr>\n
174<\/td>\nTable 95 \u2013 Data objects of AVCOExt <\/td>\n<\/tr>\n
176<\/td>\nFigure 93 \u2013 Class diagram LNGroupC::LNGroupCNew <\/td>\n<\/tr>\n
177<\/td>\nTable 96 \u2013 Data objects of CCGRExt <\/td>\n<\/tr>\n
179<\/td>\nTable 97 \u2013 Data objects of CCAP <\/td>\n<\/tr>\n
180<\/td>\nTable 98 \u2013 Data objects of CJCL <\/td>\n<\/tr>\n
182<\/td>\nTable 99 \u2013 Data objects of CFPC <\/td>\n<\/tr>\n
185<\/td>\nTable 100 \u2013 Data objects of CREL <\/td>\n<\/tr>\n
186<\/td>\nFigure 94 \u2013 Class diagram LNGroupF::LNGroupFNew
Table 101 \u2013 Data objects of FFUN <\/td>\n<\/tr>\n
188<\/td>\nFigure 95 \u2013 Class diagram LNGroupP::LNGroupPNew <\/td>\n<\/tr>\n
189<\/td>\nTable 102 \u2013 Data objects of PLFR <\/td>\n<\/tr>\n
191<\/td>\nTable 103 \u2013 Data objects of PMHE <\/td>\n<\/tr>\n
192<\/td>\nTable 104 \u2013 Data objects of PMHT <\/td>\n<\/tr>\n
194<\/td>\nTable 105 \u2013 Data objects of PMOV <\/td>\n<\/tr>\n
195<\/td>\nTable 106 \u2013 Data objects of PFPE <\/td>\n<\/tr>\n
196<\/td>\nFigure 96 \u2013 Class diagram LNGroupR::LNGroupRNew <\/td>\n<\/tr>\n
197<\/td>\nTable 107 \u2013 Data objects of RBPF <\/td>\n<\/tr>\n
198<\/td>\nTable 108 \u2013 Data objects of RRIN <\/td>\n<\/tr>\n
200<\/td>\nFigure 97 \u2013 Class diagram LNGroupS::LNGroupSNew <\/td>\n<\/tr>\n
201<\/td>\nTable 109 \u2013 Data objects of SCND <\/td>\n<\/tr>\n
202<\/td>\nTable 110 \u2013 Data objects of SFLW <\/td>\n<\/tr>\n
203<\/td>\nTable 111 \u2013 Data objects of SFPE <\/td>\n<\/tr>\n
205<\/td>\nTable 112 \u2013 Data objects of SPES <\/td>\n<\/tr>\n
206<\/td>\nFigure 98 \u2013 Class diagram LNGroupT::LNGroupT <\/td>\n<\/tr>\n
207<\/td>\nTable 113 \u2013 Data objects of TCND <\/td>\n<\/tr>\n
208<\/td>\nFigure 99 \u2013 Class diagram LNGroupX::LNGroupXNew <\/td>\n<\/tr>\n
209<\/td>\nTable 114 \u2013 Data objects of XFPE <\/td>\n<\/tr>\n
211<\/td>\nTable 115 \u2013 Data objects of XDCC <\/td>\n<\/tr>\n
212<\/td>\nFigure 100 \u2013 Class diagram LNGroupZ::LNGroupZNew <\/td>\n<\/tr>\n
213<\/td>\nFigure 101 \u2013 Class diagram LNGroupZ::LNGroupZNew2
Table 116 \u2013 Data objects of ZCONExt <\/td>\n<\/tr>\n
215<\/td>\nTable 117 \u2013 Data objects of ZHAF <\/td>\n<\/tr>\n
217<\/td>\nTable 118 \u2013 Data objects of ZLINExt <\/td>\n<\/tr>\n
219<\/td>\nTable 119 \u2013 Data objects of ZMOV <\/td>\n<\/tr>\n
220<\/td>\nTable 120 \u2013 Data objects of ZTCRExt <\/td>\n<\/tr>\n
222<\/td>\nTable 121 \u2013 Data objects of ZCAPExt <\/td>\n<\/tr>\n
223<\/td>\nTable 122 \u2013 Data objects of ZREAExt <\/td>\n<\/tr>\n
224<\/td>\n9.3 Data object name semantics and enumerations
9.3.1 Data semantics
Table 123 \u2013 Attributes defined on classes of LogicalNodes_90_14 package <\/td>\n<\/tr>\n
233<\/td>\n9.3.2 Enumerated data attribute types <\/td>\n<\/tr>\n
234<\/td>\nTable 124 \u2013 Literals of ActivePowerModKind
Table 125 \u2013 Literals of AutoReinsertionKind <\/td>\n<\/tr>\n
235<\/td>\nTable 126 \u2013 Literals of ChargingDCCircuitStateKind
Table 127 \u2013 Literals of ConfigurationDCCircuitStateKind
Table 128 \u2013 Literals of ConnectionDCStateKind <\/td>\n<\/tr>\n
236<\/td>\nTable 129 \u2013 Literals of ConverterTypKind
Table 130 \u2013 Literals of EPCModKind
Table 131 \u2013 Literals of EPCTypKind <\/td>\n<\/tr>\n
237<\/td>\nTable 132 \u2013 Literals of ForcedOperationControlModKind
Table 133 \u2013 Literals of GenerationDCStateKind
Table 134 \u2013 Literals of HarmonicFilterTypKind <\/td>\n<\/tr>\n
238<\/td>\nTable 135 \u2013 Literals of OperationCommandKind
Table 136 \u2013 Literals of OperationModKind
Table 137 \u2013 Literals of OperationStateKind <\/td>\n<\/tr>\n
239<\/td>\nTable 138 \u2013 Literals of PowerDirectionalModKind
Table 139 \u2013 Literals of ReactivePowerModKind
Table 140 \u2013 Literals of RubModKind <\/td>\n<\/tr>\n
240<\/td>\n10 SCL Extensions
Table 141 \u2013 Literals of RubTypKind
Table 142 \u2013 Literals of SequenceStateKind
Table 143 \u2013 Literals of ThyristorBranchFunctionKind <\/td>\n<\/tr>\n
241<\/td>\nAnnex A (informative)Introduction to FACTS applications
A.1 Static Var Compensator overview
Figure A.1 \u2013 Example SVC circuit diagram of an SVC <\/td>\n<\/tr>\n
242<\/td>\nFigure A.2 \u2013 SLD of example SVC with reference designations <\/td>\n<\/tr>\n
243<\/td>\nA.2 Static Synchronous Compensator overview
Figure A.3 \u2013 Simplified STATCOM Circuit diagram <\/td>\n<\/tr>\n
244<\/td>\nFigure A.4 \u2013 Example of SLD for a STATCOM with reference designations <\/td>\n<\/tr>\n
245<\/td>\nA.3 Fixed series compensation
Figure A.5 \u2013 Hybrid solution with two VSC, TSC and TCR branch
Figure A.6 \u2013 Single Line Diagram of a one segment Series Capacitor. <\/td>\n<\/tr>\n
246<\/td>\nA.4 Mechanically Switched Series Reactor (MSSR)
A.5 Thyristor Controlled Series Capacitor (TCSC)
Figure A.7 \u2013 Generic SLD of MSSR\/OLC FACTS device <\/td>\n<\/tr>\n
247<\/td>\nFigure A.8 \u2013 SLD of TCSC and transmitted power vs. transmission angle <\/td>\n<\/tr>\n
248<\/td>\nFigure A.9 \u2013 Generic TCSC control system <\/td>\n<\/tr>\n
249<\/td>\nAnnex B (informative)Modelling guideline and examples
B.1 Indication and control of breakers and switches
B.2 Power transformer
B.3 Metering and measured values
B.4 Examples of modelling of FACTS Shunt devices
Table B.1 \u2013 Suggested modelling of measured and meter values. <\/td>\n<\/tr>\n
250<\/td>\nFigure B.1 \u2013 Logical nodes representing SLD equipment SVC <\/td>\n<\/tr>\n
251<\/td>\nFigure B.2 \u2013 Modelling example of SVC functionality <\/td>\n<\/tr>\n
252<\/td>\nFigure B.3 \u2013 Logical nodes representing SLD equipment, STATCOM <\/td>\n<\/tr>\n
253<\/td>\nB.5 Example of modelling of Fixed Series Compensation
Figure B.4 \u2013 Logical nodes representing SLD equipment,Control and Protection, Fixed SC <\/td>\n<\/tr>\n
254<\/td>\nB.6 Examples of modelling of HVDC transmission
Figure B.5 \u2013 Logical Nodes representing HVDC specific equipment and functionality <\/td>\n<\/tr>\n
255<\/td>\nBibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Communication networks and systems for power utility automation – Using IEC 61850 for FACTS (flexible alternate current transmission systems), HVDC (high voltage direct current) transmission and power conversion data modelling<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2022<\/td>\n256<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":390917,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2641],"product_tag":[],"class_list":{"0":"post-390913","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-bsi","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/390913","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/390917"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=390913"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=390913"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=390913"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}