{"id":390913,"date":"2024-10-20T03:56:54","date_gmt":"2024-10-20T03:56:54","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-tr-61850-90-142021\/"},"modified":"2024-10-26T07:17:48","modified_gmt":"2024-10-26T07:17:48","slug":"bsi-pd-iec-tr-61850-90-142021","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-tr-61850-90-142021\/","title":{"rendered":"BSI PD IEC TR 61850-90-14:2021"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 1 Scope 1.1 Namespace name and version <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 1.2 Code Component distribution Tables Table 1 \u2013 Attributes of (Tr)IEC 61850-90-14:2020A namespace Table 2 \u2013 Tracking information of (Tr)IEC 61850-90-14:2020A namespace building-up <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 2 Normative references <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 3 Terms, definitions, variable symbols and abbreviated terms 3.1 Terms and definitions 3.2 Variable symbols <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 3.3 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 4 FACTS Controllers and power conversion definition and specific requirements \u2013 Definitions of FACTS and power conversions 4.1 Flexible AC transmission system 4.1.1 General 4.1.2 Examples of FACTS for shunt compensation 4.1.3 Examples of series compensation <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 4.2 Power conversions systems 5 Scope clarification and definition 5.1 General Figures Figure 1 \u2013 Conceptual view of communication paths considered in this report <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 5.2 Communication requirements and data flow 5.2.1 General Figure 2 \u2013 Levels and logical interfaces in substation automation systems <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 5.2.2 Mapping to interfaces defined in IEC 61850-5 Figure 3 \u2013 Data flow of a FACTS \/ Power Conversion controller <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 5.3 SCL modelling requirements 6 Shared use cases for FACTS controllers and Power Conversion 6.1 Commonly used actors Figure 4 \u2013 Shared use cases for FACTS controllers and Power Conversion <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Table 3 \u2013 Actors used in use cases <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 6.2 Use case: Control system redundancy 6.2.1 Communication redundancy 6.2.2 Functional application redundancy Figure 5 \u2013 Hierarchal view of commonly used actors <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 6.3 Use case: Control location and authority Figure 6 \u2013 Typical redundant FACTS\/Power Conversion control system setup <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Figure 7 \u2013 Authority for control of devices fromdifferent control levels and locations <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 6.4 Use case: System status and generic sequence processing 6.4.1 General Figure 8 \u2013 Typical scheme for implementation of control authority for function groups <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Figure 9 \u2013 System status \/ generic sequence processing <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Table 4 \u2013 Use case: System status and generic sequence processing <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 6.4.2 ASEQ Application Overview <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 6.4.3 Application example HVDC Figure 10 \u2013 ASEQ Application Overview (using the most important Data Objects) <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Figure 11 \u2013 Exemplary sequence diagram, not applicable to all use cases <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 6.4.4 Application example Shunt connected FACTS device Figure 12 \u2013 Operating states of a FACTS shunt device <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure 13 \u2013 Use case diagrams of State use case <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 6.5 Use case: Cooling system 6.5.1 General Table 5 \u2013 Use case: State <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Figure 14 \u2013 Cooling control use cases Table 6 \u2013 Use case: Cooling system <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 6.5.2 List of logical nodes for modelling of a Water based cooling system 6.5.3 Example of modelling a cooling system Table 7 \u2013 Logical nodes for modelling a water-based cooling system <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure 15 \u2013 Cooling control modelling example <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 6.6 Use case: Control and supervision of Harmonic filter Figure 16 \u2013 Harmonic filter control and supervision <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 6.7 Use case: Control of external devices as part of automatic reactive power control 6.7.1 General Table 8 \u2013 Use case: Control and supervision of Harmonic filter <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Figure 17 \u2013 Use case Control of external reactive components <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Table 9 \u2013 Use case: Control of external banks mode <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 6.7.2 Modelling example for external device control of a FACTS shunt device Figure 18 \u2013 Modelling external banks for reactive power optimization. Table 10 \u2013 Process data for Control of external banks mode <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 6.8 Use case: Converter status during degraded operation Figure 19 \u2013 Use case Converter status <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 6.9 Use case: Power Semiconductor application monitoring 6.9.1 General Figure 20 \u2013 Example of a hierarchical arrangement of power electronic units Table 11 \u2013 Use case: Get Converter Status <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Figure 21 \u2013 Arrangement of 12 thyristor valvesin a 12-pulse converter configuration <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | Figure 22 \u2013 Use cases for semiconductor application monitoring Table 12 \u2013 Use case: Semiconductor application monitoring <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 6.9.2 Equipment Indications and Properties Table 13 \u2013 Thyristor controlled reactive components Table 14 \u2013 Process information for Thyristor controlled reactive component <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 6.9.3 Modelling requirements, results, conclusion 6.10 Use case: Coordinated control between FACTS and other Power Conversion devices 6.10.1 General Figure 23 \u2013 Schematic view of two SVC devices connected in parallel. <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Figure 24 \u2013 Coordination between two FACTS \/ Power Conversion Figure 25 \u2013 Use case diagram for coordinated FACTS device operation <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 6.10.2 Use case descriptions Figure 26 \u2013 Coordination signals between two SVCs Table 15 \u2013 Coordinated FACTS device operation use case <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 6.10.3 Optimized signal list and process information for modelling Figure 27 \u2013 Optimized signal list for IEC 61850 <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 6.11 FACTS and Power Conversion Protection 6.11.1 General 6.11.2 Use case Protective action Table 16 \u2013 Process information for coordinated control mode <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Figure 28 \u2013 Use cases for Control System Protective Actions Table 17 \u2013 Use cases for Control System Protective Actions <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 6.11.3 Modelling summary 7 FACTS 7.1 General <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 7.2 Shunt connected FACTS devices 7.2.1 General 7.2.2 Overview Figure 29 \u2013 V-I diagram of a generic SVC Table 18 \u2013 Classification of FACTS Controllers <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 7.2.3 Use cases for Shunt Connected FACTS device Figure 30 \u2013 V-I diagram of a generic STATCOM Figure 31 \u2013 Use cases for substation control of a shunt connected FACTS device. <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Table 19 \u2013 Main use cases of FACTS Shunt device <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Figure 32 \u2013 Example of operating states of a FACTS shunt device Figure 33 \u2013 Example of control modes of a shunt connected FACTS device visualized as a state machine <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | Figure 34 \u2013 Use cases for changing states of FACTS device <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Figure 35 \u2013 Change of control mode use case Table 20 \u2013 Changing states of FACTS device use cases <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Table 21 \u2013 Main control functions Table 22 \u2013 Supplementary control functions Table 23 \u2013 Additional control mode functions Table 24 \u2013 Use case: Control Mode selection <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Figure 36 \u2013 Sub-use cases of Configuration use case Table 25 \u2013 Change Control mode process data <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Table 26 \u2013 Use case: Configuration of control mode <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Figure 37 \u2013 Automatic Reactive Power Control use case Table 27 \u2013 Automatic Reactive Power Control process data <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Figure 38 \u2013 Non-automatic control mode use case Table 28 \u2013 Non-automatic control mode use case Table 29 \u2013 Non-automatic control mode setpoints <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Figure 39 \u2013 Simplified fixed reactive power regulator block diagram Figure 40 \u2013 Simplified voltage regulator block diagramof automatic voltage control mode for an SVC Table 30 \u2013 Reactive power control mode process data <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Table 31 \u2013 Additional functions in Automatic Voltage Control mode Table 32 \u2013 Voltage Control mode process data <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Figure 41 \u2013 Shunt connected FACTS device operating characteristicwith slow susceptance\/reactive power regulator Table 33 \u2013 Process data for slow susceptance regulator modeor reactive power regulator <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Figure 42 \u2013 Example of automatic voltage control system with additional reference signal for POD Table 34 \u2013 POD mode settings and controls <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Figure 43 \u2013 Activation of Gain Optimizer Function Figure 44 \u2013 Reset Gain Command Interaction Diagram <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Table 35 \u2013 Use case: Gain Table 36 \u2013 Gain Supervision mode data objects Table 37 \u2013 Gain Optimizer mode data objects <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Table 38 \u2013 Protective Control Functions of SVC use cases <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | 7.3 Series connected FACTS devices 7.3.1 Overview 7.3.2 Use case of Series Compensation Table 39 \u2013 Protective Control Functions of a VSC use cases <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Figure 45 \u2013 Series Compensation Use case Table 40 \u2013 Use case: Series Compensation <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Figure 46 \u2013 Use cases for Fixed Series Capacitors <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Figure 47 \u2013 Use case for Capacitor Discharge function Table 41 \u2013 Use case: Fixed Series compensation <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Figure 48 \u2013 Use case for By-passing Table 42 \u2013 Use case: Capacitor Discharge Function <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Table 43 \u2013 Bypassing of series capacitor <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Figure 49 \u2013 Sub use cases for Lock-out use case Table 44 \u2013 Use case: Lock-out and temporary block insertion <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | Figure 50 \u2013 Sub use cases for auto reinsertion <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Figure 51 \u2013 Interaction of Automatic Reinsertion function with other functions Table 45 \u2013 Use case: Auto reinsertion <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Figure 52 \u2013 Example of states in Automatic reinsertion function <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Table 46 \u2013 Transition description for Figure 55 <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Figure 53 \u2013 SLD of Fast Protective Equipment <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Figure 54 \u2013 Use case for Fast Protective equipment <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Figure 55 \u2013 SLD symbol for Metal Oxide Varistor Table 47 \u2013 Use case: Fast Protective Equipment <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Figure 56 \u2013 Zink Oxide Varistor use case <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Figure 57 \u2013 MSSR Use case diagram Table 48 \u2013 Use case: Zink Oxide Varistor <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Table 49 \u2013 Use case: MSSR Table 50 \u2013 Indications and measurements <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | 7.3.3 Series Capacitors protections Figure 58 \u2013 Additional use cases for TCSC Table 51 \u2013 Use case: TCSC <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | Table 52 \u2013 Overview of typical series capacitor bank protections,based on IEC 60143-2 <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Figure 59 \u2013 SC Protection function Interface <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | Table 53 \u2013 Use case: SC protection functions <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | Table 54 \u2013 Series protections modelling guideline <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | 8 Power Conversion 8.1 Power Converters 8.1.1 Overview Figure 60 \u2013 Varistor Overload Protection use case Figure 61 \u2013 Varistor Failure Protection use case <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | 8.1.2 Power converter use cases with signal and data item descriptions Figure 62 \u2013 Generic application of Power Conversion <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | Figure 63 \u2013 Use Active \/ reactive power operation mode selection Table 55 \u2013 Use case: Active \/ reactive power operation mode selection <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | Figure 64 \u2013 Active power control use case <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | Table 56 \u2013 Use case: Active power control <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | Figure 65 \u2013 P-f characteristic <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | Figure 66 \u2013 P-V characteristic Table 57 \u2013 New data items for P-f-characteristics <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | Figure 67 \u2013 Example: Simple 4-point P-DCVol characteristic Table 58 \u2013 New data items for P-V <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | Figure 68 \u2013 Example: Sophisticated 9-point P-DCVol characteristic Table 59 \u2013 New data items for P-DCVol <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | Figure 69 \u2013 P_Fixed Table 60 \u2013 New data items for fixed active power Table 61 \u2013 New data items for fixed DC current Table 62 \u2013 New data items for Active power (general) <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Figure 70 \u2013 Reactive power control use case <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | Figure 71 \u2013 Q-V characteristic Table 63 \u2013 Reactive Power control use case (Power Conversion) <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Figure 72 \u2013 Q_Fixed Table 64 \u2013 New data items for Q-V Table 65 \u2013 New data items for Q_fixed <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Figure 73 \u2013 Phi_Fixed Table 66 \u2013 New data items for Q_Band Table 67 \u2013 New data items for Phi_Fixed <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | Figure 74 \u2013 V_Band Table 68 \u2013 New data items for V_Band Table 69 \u2013 New data items for Reactive power (general), <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Table 70 \u2013 Use case Reactive power (Power Conversion) <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | Figure 75 \u2013 Use case <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | 8.2 HVDC 8.2.1 Overview Table 71 \u2013 Intermediate DC circuit use case <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | 8.2.2 HVDC use cases with signal and data item descriptions Figure 76 \u2013 Typical HVDC setup <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | Figure 77 \u2013 Use case Power direction change <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | Table 72 \u2013 Use case Power direction change <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | Figure 78 \u2013 Use case Run-up\/Run-back modules <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Table 73 \u2013 Use case Run-up\/Run-back modules <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Figure 79 \u2013 General AEPC functional characteristic <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | Figure 80 \u2013 Use case Automatic Emergency Power Control Table 74 \u2013 Use case Automatic Emergency Power Control <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | Table 75 \u2013 AEPC data modelling example <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | Figure 81 \u2013 DC Line fault recovery sequence <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | Table 76 \u2013 Use case: DC Line fault recovery sequence <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | Figure 82 \u2013 Examples for typical HVDC DC-Yard configurations <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | Figure 83 \u2013 DC Yard configuration Table 77 \u2013 Use case: DC Yard configuration <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | Figure 84 \u2013 Coordinated mode switchover <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | Table 78 \u2013 Use case: Coordinated mode switchover <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | Figure 85 \u2013 Function mode switchover <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | Table 79 \u2013 Use case: Function mode switchover <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Figure 86 \u2013 Tap changer control and supervision Table 80 \u2013 Use case: Tap changer control and supervision <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | 8.3 SFC \u2013 Static Frequency Converter 8.3.1 Overview 8.3.2 SFC use cases with signal and data item descriptions Figure 87 \u2013 Typical SFC setup <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | Figure 88 \u2013 Control by external reference Table 81 \u2013 Use case: Control by external reference <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | 9 Data model 9.1 Abbreviated terms used in data object names 9.2 Logical node preliminaries 9.2.1 Package LogicalNodes_90_14 Table 82 \u2013 Normative abbreviations for data object names <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | Figure 89 \u2013 Class diagram LogicalNodes_90_14::LogicalNodes_90_14 <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Figure 90 \u2013 Class diagram AbstractLNs::AbstractLNs <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | Table 83 \u2013 Data objects of FACTSandPowerConversionLN <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | Table 84 \u2013 Data objects of ReactiveComponentInterfaceLN <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | Table 85 \u2013 Data objects of EmergencyPowerControl_PowerRunUpRunBackLN <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | Figure 91 \u2013 Class diagram LNGroupA::LNGroupANew <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | Figure 92 \u2013 Class diagram LNGroupA::LNGroupAExt <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | Table 86 \u2013 Data objects of ARCOExt <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | Table 87 \u2013 Data objects of AFLK <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | Table 88 \u2013 Data objects of AMSR <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | Table 89 \u2013 Data objects of APOD <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | Table 90 \u2013 Data objects of AEPC <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | Table 91 \u2013 Data objects of ARUB <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Table 92 \u2013 Data objects of ASEQ <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | Table 93 \u2013 Data objects of ATCCExt <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | Table 94 \u2013 Data objects of ARPC <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | Table 95 \u2013 Data objects of AVCOExt <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | Figure 93 \u2013 Class diagram LNGroupC::LNGroupCNew <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | Table 96 \u2013 Data objects of CCGRExt <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | Table 97 \u2013 Data objects of CCAP <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | Table 98 \u2013 Data objects of CJCL <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | Table 99 \u2013 Data objects of CFPC <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | Table 100 \u2013 Data objects of CREL <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | Figure 94 \u2013 Class diagram LNGroupF::LNGroupFNew Table 101 \u2013 Data objects of FFUN <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | Figure 95 \u2013 Class diagram LNGroupP::LNGroupPNew <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | Table 102 \u2013 Data objects of PLFR <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | Table 103 \u2013 Data objects of PMHE <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | Table 104 \u2013 Data objects of PMHT <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | Table 105 \u2013 Data objects of PMOV <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | Table 106 \u2013 Data objects of PFPE <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | Figure 96 \u2013 Class diagram LNGroupR::LNGroupRNew <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | Table 107 \u2013 Data objects of RBPF <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | Table 108 \u2013 Data objects of RRIN <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | Figure 97 \u2013 Class diagram LNGroupS::LNGroupSNew <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | Table 109 \u2013 Data objects of SCND <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | Table 110 \u2013 Data objects of SFLW <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | Table 111 \u2013 Data objects of SFPE <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | Table 112 \u2013 Data objects of SPES <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | Figure 98 \u2013 Class diagram LNGroupT::LNGroupT <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | Table 113 \u2013 Data objects of TCND <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | Figure 99 \u2013 Class diagram LNGroupX::LNGroupXNew <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | Table 114 \u2013 Data objects of XFPE <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | Table 115 \u2013 Data objects of XDCC <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | Figure 100 \u2013 Class diagram LNGroupZ::LNGroupZNew <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | Figure 101 \u2013 Class diagram LNGroupZ::LNGroupZNew2 Table 116 \u2013 Data objects of ZCONExt <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | Table 117 \u2013 Data objects of ZHAF <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | Table 118 \u2013 Data objects of ZLINExt <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | Table 119 \u2013 Data objects of ZMOV <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | Table 120 \u2013 Data objects of ZTCRExt <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | Table 121 \u2013 Data objects of ZCAPExt <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | Table 122 \u2013 Data objects of ZREAExt <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | 9.3 Data object name semantics and enumerations 9.3.1 Data semantics Table 123 \u2013 Attributes defined on classes of LogicalNodes_90_14 package <\/td>\n<\/tr>\n | ||||||
233<\/td>\n | 9.3.2 Enumerated data attribute types <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | Table 124 \u2013 Literals of ActivePowerModKind Table 125 \u2013 Literals of AutoReinsertionKind <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | Table 126 \u2013 Literals of ChargingDCCircuitStateKind Table 127 \u2013 Literals of ConfigurationDCCircuitStateKind Table 128 \u2013 Literals of ConnectionDCStateKind <\/td>\n<\/tr>\n | ||||||
236<\/td>\n | Table 129 \u2013 Literals of ConverterTypKind Table 130 \u2013 Literals of EPCModKind Table 131 \u2013 Literals of EPCTypKind <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | Table 132 \u2013 Literals of ForcedOperationControlModKind Table 133 \u2013 Literals of GenerationDCStateKind Table 134 \u2013 Literals of HarmonicFilterTypKind <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | Table 135 \u2013 Literals of OperationCommandKind Table 136 \u2013 Literals of OperationModKind Table 137 \u2013 Literals of OperationStateKind <\/td>\n<\/tr>\n | ||||||
239<\/td>\n | Table 138 \u2013 Literals of PowerDirectionalModKind Table 139 \u2013 Literals of ReactivePowerModKind Table 140 \u2013 Literals of RubModKind <\/td>\n<\/tr>\n | ||||||
240<\/td>\n | 10 SCL Extensions Table 141 \u2013 Literals of RubTypKind Table 142 \u2013 Literals of SequenceStateKind Table 143 \u2013 Literals of ThyristorBranchFunctionKind <\/td>\n<\/tr>\n | ||||||
241<\/td>\n | Annex A (informative)Introduction to FACTS applications A.1 Static Var Compensator overview Figure A.1 \u2013 Example SVC circuit diagram of an SVC <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | Figure A.2 \u2013 SLD of example SVC with reference designations <\/td>\n<\/tr>\n | ||||||
243<\/td>\n | A.2 Static Synchronous Compensator overview Figure A.3 \u2013 Simplified STATCOM Circuit diagram <\/td>\n<\/tr>\n | ||||||
244<\/td>\n | Figure A.4 \u2013 Example of SLD for a STATCOM with reference designations <\/td>\n<\/tr>\n | ||||||
245<\/td>\n | A.3 Fixed series compensation Figure A.5 \u2013 Hybrid solution with two VSC, TSC and TCR branch Figure A.6 \u2013 Single Line Diagram of a one segment Series Capacitor. <\/td>\n<\/tr>\n | ||||||
246<\/td>\n | A.4 Mechanically Switched Series Reactor (MSSR) A.5 Thyristor Controlled Series Capacitor (TCSC) Figure A.7 \u2013 Generic SLD of MSSR\/OLC FACTS device <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | Figure A.8 \u2013 SLD of TCSC and transmitted power vs. transmission angle <\/td>\n<\/tr>\n | ||||||
248<\/td>\n | Figure A.9 \u2013 Generic TCSC control system <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | Annex B (informative)Modelling guideline and examples B.1 Indication and control of breakers and switches B.2 Power transformer B.3 Metering and measured values B.4 Examples of modelling of FACTS Shunt devices Table B.1 \u2013 Suggested modelling of measured and meter values. <\/td>\n<\/tr>\n | ||||||
250<\/td>\n | Figure B.1 \u2013 Logical nodes representing SLD equipment SVC <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | Figure B.2 \u2013 Modelling example of SVC functionality <\/td>\n<\/tr>\n | ||||||
252<\/td>\n | Figure B.3 \u2013 Logical nodes representing SLD equipment, STATCOM <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | B.5 Example of modelling of Fixed Series Compensation Figure B.4 \u2013 Logical nodes representing SLD equipment,Control and Protection, Fixed SC <\/td>\n<\/tr>\n | ||||||
254<\/td>\n | B.6 Examples of modelling of HVDC transmission Figure B.5 \u2013 Logical Nodes representing HVDC specific equipment and functionality <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Communication networks and systems for power utility automation – Using IEC 61850 for FACTS (flexible alternate current transmission systems), HVDC (high voltage direct current) transmission and power conversion data modelling<\/b><\/p>\n |