{"id":414301,"date":"2024-10-20T05:59:51","date_gmt":"2024-10-20T05:59:51","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-2937-2022\/"},"modified":"2024-10-26T11:11:26","modified_gmt":"2024-10-26T11:11:26","slug":"ieee-2937-2022","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-2937-2022\/","title":{"rendered":"IEEE 2937-2022"},"content":{"rendered":"
New IEEE Standard – Active. Artificial intelligence (AI) computing differs from generic computing in terms of device formation, operators, and usage. AI server systems, including AI server, cluster, and high-performance computing (HPC) infrastructures are designed specifically for this purpose. The performance of these infrastructures is important to users not only on generic models but also on the ones for specific domains. Formal methods for the performance benchmarking for AI server systems are provided in this standard, including approaches for test, metrics, and measure. In addition, the technical requirements for benchmarking tools are discussed.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | IEEE Std 2937-2022 Front cover <\/td>\n<\/tr>\n | ||||||
2<\/td>\n | Title page <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | Important Notices and Disclaimers Concerning IEEE Standards Documents <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | Participants <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | Introduction <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | Contents <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 1. Overview 1.1 Scope 1.2 Word usage 2. Normative references <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 3. Definitions, acronyms, and abbreviations 3.1 Definitions <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 3.2 Acronyms and abbreviations <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 4. AI server system performance benchmarking framework 4.1 Overview 4.2 Modes of test <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 4.3 Information of a test <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 5. Training test 5.1 Overview <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 5.2 Scenarios <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 5.3 Metrics and measure approach <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 5.4 Requirement on toolkit <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 6. Inference test 6.1 Overview <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 6.2 Workload <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 6.3 Scenarios <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 6.4 Metrics and measure approach <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 6.5 Requirement on toolkit <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Annex A (informative) Utilization ratio <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Annex B (normative) Rules for the selection and use of power measurement devices B.1 Power meter <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | B.2 BMC <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Annex C (informative) Effective computing ability C.1 Effective computing ability of training C.2 Effective computing ability of inference <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Annex D (informative) Extra computing jobs for “mixed” query arrival mode D.1 File operation D.2 Balanced binary tree search <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Annex E (informative) Bibliography <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Back cover <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" IEEE Standard for Performance Benchmarking for Artificial Intelligence Server Systems<\/b><\/p>\n |