{"id":451613,"date":"2024-10-20T09:19:00","date_gmt":"2024-10-20T09:19:00","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-61400-50-32022-2\/"},"modified":"2024-10-26T17:21:47","modified_gmt":"2024-10-26T17:21:47","slug":"bs-en-iec-61400-50-32022-2","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-61400-50-32022-2\/","title":{"rendered":"BS EN IEC 61400-50-3:2022"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Annex ZA (normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | Symbols and abbreviated terms <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 5 Overview 5.1 General <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 5.2 Measurement methodology overview <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 5.3 Document overview 6 Lidar requirements 6.1 Functional requirements <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 6.2 Documentary requirements 6.2.1 Technical documentation <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 6.2.2 Installation and operation documentation 7 Calibration and uncertainty of nacelle lidar intermediate values 7.1 Calibration method overview <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 7.2 Verification of beam trajectory\/geometry 7.2.1 Static position uncertainty Figures Figure 1 \u2013 Example of opening angle \u03b2 between two beams <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 7.2.2 Dynamic position uncertainty 7.3 Inclinometer calibration 7.4 Verification of the measurement range <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 7.5 LOS speed calibration 7.5.1 Method overview <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 7.5.2 Calibration site requirements Figure 2 \u2013 Side elevation sketch of calibration setup <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Figure 3 \u2013 Plan view sketch of sensing and inflow areas <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 7.5.3 Setup requirements <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 7.5.4 Calibration range 7.5.5 Calibration data requirements and filtering Figure 4 \u2013 Sketch of a calibration setup <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 7.5.6 Determination of LOS <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Figure 5 \u2013 Example of lidar response to the wind direction and cosine fit <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 7.5.7 Binning of data and database requirements 7.6 Uncertainty of the LOS speed measurement 7.6.1 General Figure 6 \u2013 Example of LOS evaluation using the RSS process: RSS vs \u03b8proj <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 7.6.2 Uncertainty of Vref <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 7.6.3 Flow inclination uncertainty 7.6.4 Uncertainty of the LOS speed measurement <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Tables Table 1 \u2013 Summary of calibration uncertainty components <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 7.7 Calibration results Table 2 \u2013 Calibration table example Table 3 \u2013 Calibration table example(n=1\u2026N; N is the total number of lines of sight calibrated) <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 7.8 Calibration reporting requirements 7.8.1 Report content 7.8.2 General lidar information 7.8.3 Verification of beam geometry\/trajectory (according to 7.2) 7.8.4 Inclinometer calibration (according to 7.3) 7.8.5 Verification of the sensing range (according to 7.4) 7.8.6 LOS speed calibration (for each LOS) <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 8 Uncertainty due to changes in environmental conditions 8.1 General 8.2 Intermediate value uncertainty due to changes in environmental conditions 8.2.1 Documentation 8.2.2 Method <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 8.2.3 List of environmental variables to be considered 8.2.4 Significance of uncertainty contribution 8.3 Evidence-base supporting the adequacy of the WFR <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 8.4 Requirements for reporting <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 9 Uncertainty of reconstructed wind parameters 9.1 Horizontal wind speed uncertainty <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 9.2 Uncertainty propagation through WFR algorithm 9.2.1 Propagation of intermediate value uncertainties u\u27e8V\u27e9,WFR Figure 7 \u2013 High level process for horizontal wind speed uncertainty propagation <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 9.2.2 Uncertainties of other WFR parameters uWFR,par 9.3 Uncertainty associated with the WFR algorithm uope,lidar 9.4 Uncertainty due to varying measurement height u\u27e8\u0394V\u27e9,measHeight 9.5 Uncertainty due to lidar measurement inconsistency <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 9.6 Combining uncertainties 10 Preparation for specific measurement campaign 10.1 Overview of procedure 10.2 Pre-campaign check list Figure 8 \u2013 Procedure flow chart <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 10.3 Measurement set up 10.3.1 Lidar installation 10.3.2 Other sensors <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 10.3.3 Nacelle position calibration 10.4 Measurement sector 10.4.1 General 10.4.2 Assessment of influence from surrounding WTGs and obstacles Figure 9 \u2013 Plan view sketch of NML beams upstream of WTG being assessed and neighbouring turbine wake <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Figure 10 \u2013 Sectors to exclude due to wakes of neighbouring and operating WTGs and significant obstacles <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 10.4.3 Terrain assessment Figure 11 \u2013 Example of sectors to exclude due to wakes of a neighbouring turbine and a significant obstacle <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 11 Measurement procedure 11.1 General 11.2 WTG operation Figure 12 \u2013 Example of full directional sector discretization <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 11.3 Consistency check of valid measurement sector Figure 13 \u2013 Lidar relative wind direction vs turbine yawfor a two-beam nacelle lidar [Wagner R, 2013] <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 11.4 Data collection Figure 14 \u2013 Example of LOS turbulence intensity vs turbine yaw,for a two-beam nacelle lidar <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 11.5 Data rejection 11.6 Database 11.7 Application of WFR algorithm <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 11.8 Measurement height variations 11.9 Lidar measurement monitoring 12 Reporting format \u2013 relevant tables and figures specific to nacelle-mounted lidars 12.1 General 12.2 Specific measurement campaign site description <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 12.3 Nacelle lidar information 12.4 WTG information 12.5 Database <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 12.6 Plots 12.7 Uncertainties <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Annex A (informative) Example calculation of uncertainty of reconstructed parameters for WFR with two lines of sight A.1 Introduction to example case <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | A.2 Uncertainty propagation through WFR algorithm <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Table A.1 \u2013 Uncertainty components and their correlationsbetween different LOSs for this example <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | A.3 Operational uncertainty of the lidar and WFR algorithm A.4 Uncertainty contributions from variation of measurement height <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | A.5 Wind speed consistency check A.6 Combined uncertainty <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Annex B (informative) Suggested method for the measurement of tilt and roll angles Figure B.1 \u2013 Pair of tilted and rolled lidar beams (red) shown in relation to the reference position (grey) <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Figure B.2 \u2013 Opening angle between two beams symmetric with respect to the horizontal plane(\u03b3 ) and its projection onto the vertical plane of symmetry of the lidar (\u03b3V) <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Annex C (informative) Recommendation for installation of lidars on the nacelle C.1 Positioning of lidar optical head on the nacelle Figure C.1 \u2013 Example of a good (left) and bad (right) position for a 2-beam lidar Figure C.2 \u2013 Example of a good (left) and bad (right) position for a 4-beam lidar <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | C.2 Lidar optical head pre-tilt for fixed beam lidars <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | C.3 Attachment points for the lidar Figure C.3 \u2013 Sketch of lidar optical head pre-tilted downwards to measure at hub height (example for a two beam lidar) <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Annex D (informative) Assessing the Influence of nacelle-mounted lidar on turbine behaviour D.1 General D.2 Recommended consistency checks methods D.2.1 General D.2.2 Documentation-based approach <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | D.2.3 Data-based approach using neighbouring WTG <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Figure D.1 \u2013 Example of reporting the side-by-side comparison <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | D.2.4 Data-based approach using only the WTG being assessed Figure D.2 \u2013 Example of the power ratio between two neighbouring turbines Figure D.3 \u2013 General process outline <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Figure D.4 \u2013 Example of binned \u0394DirNac function for a setting where the lidar has not significantly influenced the two nacelle wind direction sensors\u2019 reported signals <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Wind energy generation systems – Use of nacelle-mounted lidars for wind measurements<\/b><\/p>\n |