{"id":78993,"date":"2024-10-17T18:27:53","date_gmt":"2024-10-17T18:27:53","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asce-9780784408964-2007\/"},"modified":"2024-10-24T19:38:46","modified_gmt":"2024-10-24T19:38:46","slug":"asce-9780784408964-2007","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asce\/asce-9780784408964-2007\/","title":{"rendered":"ASCE 9780784408964 2007"},"content":{"rendered":"
This report examines the inextricable link between energy production and reservoir water quality, which poses an ongoing challenge for civil engineers.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
8<\/td>\n | Table of Contents <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 1. Introduction <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 1.1. Reservoirs and Energy Production <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | Hydroelectric Generation <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | The Future of Hydroelectric Production on Reservoirs <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Thermal Generation <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | The Future of Thermal Energy Production on Reservoirs 1.2. Uses of Report <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 1.3. References <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 2. Regulatory Framework <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 2.1. Authorizations <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 2.2. Regulatory Emphasis <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 2.3. Procedural Emphasis <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 2.4. Water Quantity and Use Issues <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 2.5. Water Quality Impairment Lists and Pollution Allocation Issues <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 2.6. Standards and Criteria 2.7. Impairment Determination <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 2.8. Total Maximum Daily Loads Elements of A TMDL and Schedules <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | TMDL Issues Related to Reservoir Water Quality <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | Pollutant Allocations and TMDL Implementation <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 2.9. Fish and Wildlife Issues <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 2.10. Effects of Operations on Wildlife And Fisheries Fish Passage Issues <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | Entrainment and Impingement Issues <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 2.11. Water Quality and Flow <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 2.12. Endangered Species Act Issues (ESA) 2.13. Biocriteria <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 2.14. FERC Licensing Issues <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 2.15. Federal Power Act Provisions <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | FPA Section 4(E), Equal Consideration Standard FPA Section 10(A)(1) Comprehensive Development Standard <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | FPA Section 10(J) FPA Section 30(C) FPA Section 18 FPA Section 31 (A) 2.16. Other Applicable Laws and Statutes National Environmental Policy Act (NEPA) <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Fish and Wildlife Coordination Act (FWCA) National Historic Preservation Act (NHPA) Endangered Species Act (ESA) Wild and Scenic Rivers Act (WSRA) and the CEQ procedures <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Coastal Zone Management Act (CZMA) \u2013 1972 Americans with Disabilities Act (ADA) Clean Water Act (CWA) <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 2.17. Other Regulatory Issues <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 2.18. References <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 3. Fundamental Water Quality Processes <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 3.1 Types of Reservoirs <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Mainstem Reservoirs Storage Reservoirs Transition Reservoirs 3.2 Reservoir Zones <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Riverine Zone Transition Zone <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Lacustrine Zone 3.3 Reservoir Hydrodynamics <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 3.4 Water Properties <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 3.5 Reservoir Stratification <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 3.6 Reservoir Heat Sources and Sinks <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 3.7 Particle Settling and Transport 3.8 Light and Heat Penetration <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 3.9 Dissolved Oxygen in Stratified Reservoirs <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 3.10 Anoxic Reservoir Processes <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Deoxygenation Denitrification Ammonification <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Manganese Reduction Iron Reduction Sulfate Reduction Acidification of Organics Methane Formation <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Anaerobic Summary 3.11 Reservoir Discharge and Operational Effects <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 3.12 Tailwater Quality Tailwater Temperature Tailwater Dissolved Oxygen <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Tailwater Iron and Manganese Oxidation Tailwater Nutrients and Other Materials <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 3.13 References <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 4. Numerical Hydrodynamic and Transport Models for Reservoirs <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 4.1. Governing Equations for Mass, Momentum, Constituent Mass and Heat Conservation Theoretical Basis for Flow Modeling <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Coordinate System <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Turbulent Time-Averaged Equations <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Overview of Turbulence Closure Modeling Approaches <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | Modeling Approaches <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | 4.2. Mathematical solution techniques, computational efficiency and hydrodynamic and water quality model linkages Solution Techniques <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | Computational Efficiency <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | Model Inputs Use and Linkages for Water Quality Modeling <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | 4.3. References <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | 5. Water Quality Modeling Theory 5.1. Introduction <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | 5.2. Eutrophication Modeling Eutrophication Processes <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | Model Formulation and Computational Properties <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | Evaluation of Kinetic Coefficients <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | Future Directions in Eutrophication Modeling <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | 5.3. Sediment Exchange Processes <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | Model Framework <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | Computation of SOD and Sediment Release Rates <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | Nitrate <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | Phosphate and Silica <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | Water Quality Linkage 5.4. Toxics modeling <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | Risk and Hazard Assessments <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | Modeling Organic Chemicals <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | Modeling Metals <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | Slow Reactions Bioaccumulaton Modeling <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | Evaluating Sediment Transport and Stability <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | 5.5. Heat budget modeling <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | 5.6. References <\/td>\n<\/tr>\n | ||||||
240<\/td>\n | 6. Modeling Systems and Their Application 6.1. Models and modeling systems <\/td>\n<\/tr>\n | ||||||
243<\/td>\n | 6.2. The model application procedure Step 1: Identify the Problem <\/td>\n<\/tr>\n | ||||||
245<\/td>\n | Step 2: Assess Prototype Conditions <\/td>\n<\/tr>\n | ||||||
246<\/td>\n | Step 3: Develop the Modeling Plan <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | Step 4: Build the Model Grid <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | Step 5: Assemble Boundary Condition Data <\/td>\n<\/tr>\n | ||||||
264<\/td>\n | Step 6: Assemble Initial Condition Data <\/td>\n<\/tr>\n | ||||||
266<\/td>\n | Step 7: Assemble calibration and evaluation data <\/td>\n<\/tr>\n | ||||||
269<\/td>\n | Step 8: Develop Model Input <\/td>\n<\/tr>\n | ||||||
270<\/td>\n | Step 9: Test and Calibrate the model <\/td>\n<\/tr>\n | ||||||
276<\/td>\n | Step 10: Apply the model <\/td>\n<\/tr>\n | ||||||
277<\/td>\n | Data quality issues <\/td>\n<\/tr>\n | ||||||
278<\/td>\n | Quality Assurance (QA) Planning <\/td>\n<\/tr>\n | ||||||
282<\/td>\n | 6.3. References <\/td>\n<\/tr>\n | ||||||
288<\/td>\n | 7. Case Studies <\/td>\n<\/tr>\n | ||||||
291<\/td>\n | 7.1. Water Quality Modeling of the Tennessee River System to Support Beneficial Water Uses Introduction Site Description <\/td>\n<\/tr>\n | ||||||
292<\/td>\n | Approach to Water Quality Assessment <\/td>\n<\/tr>\n | ||||||
294<\/td>\n | Hydrodynamic and Water Quality Models <\/td>\n<\/tr>\n | ||||||
295<\/td>\n | Model Application <\/td>\n<\/tr>\n | ||||||
296<\/td>\n | Examples of Model Output and Evaluation Metrics <\/td>\n<\/tr>\n | ||||||
297<\/td>\n | Conclusions <\/td>\n<\/tr>\n | ||||||
298<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
310<\/td>\n | 7.2. Limnology and Water Quality in a Multi-Zone Reservoir: Flaming Gorge Reservoir Description of Project <\/td>\n<\/tr>\n | ||||||
311<\/td>\n | Geologic Setting-Paleolimnolgy Longitudinal zonation <\/td>\n<\/tr>\n | ||||||
312<\/td>\n | Issues involved <\/td>\n<\/tr>\n | ||||||
313<\/td>\n | Sediment\/phosphorus diagenesis in the riverine\/transitional zone <\/td>\n<\/tr>\n | ||||||
314<\/td>\n | Studies and Modeling <\/td>\n<\/tr>\n | ||||||
315<\/td>\n | Selective Level Outlet works <\/td>\n<\/tr>\n | ||||||
316<\/td>\n | Summary References <\/td>\n<\/tr>\n | ||||||
320<\/td>\n | 7.3. Old Hickory Reservoir <\/td>\n<\/tr>\n | ||||||
321<\/td>\n | Bathymetry <\/td>\n<\/tr>\n | ||||||
322<\/td>\n | Time-of-travel tests Calibration <\/td>\n<\/tr>\n | ||||||
325<\/td>\n | Gallatin Steam Plant thermal and water quality impacts <\/td>\n<\/tr>\n | ||||||
328<\/td>\n | 7.4. Use of Systems Models in Conjunction with 3-D Models: Gerald Gentlemen Station, Nebraska <\/td>\n<\/tr>\n | ||||||
329<\/td>\n | Systems Model <\/td>\n<\/tr>\n | ||||||
332<\/td>\n | Calibration procedure and results <\/td>\n<\/tr>\n | ||||||
333<\/td>\n | Frequency of exceedance statistics <\/td>\n<\/tr>\n | ||||||
334<\/td>\n | 3-D Model <\/td>\n<\/tr>\n | ||||||
335<\/td>\n | Calibration procedure and results <\/td>\n<\/tr>\n | ||||||
338<\/td>\n | Simulated Pond Modifications <\/td>\n<\/tr>\n | ||||||
339<\/td>\n | Conclusion References <\/td>\n<\/tr>\n | ||||||
340<\/td>\n | 7.5. Effectiveness of an Internal Weir to Improve Water Quality in a Hydroelectric Reservoir The Hydrodynamic and Water Quality Model <\/td>\n<\/tr>\n | ||||||
341<\/td>\n | Input Conditions <\/td>\n<\/tr>\n | ||||||
342<\/td>\n | Model Simulation Results <\/td>\n<\/tr>\n | ||||||
343<\/td>\n | Conclusions References <\/td>\n<\/tr>\n | ||||||
350<\/td>\n | 7.6. Hydrothermal Modeling Studies of Cooling Tower Alternatives <\/td>\n<\/tr>\n | ||||||
351<\/td>\n | Model Description and Input Data <\/td>\n<\/tr>\n | ||||||
352<\/td>\n | Model Temperature Results Verification of Temperature Results from Survey Data <\/td>\n<\/tr>\n | ||||||
354<\/td>\n | Dissolved Oxygen Simulations and Results <\/td>\n<\/tr>\n | ||||||
355<\/td>\n | Conclusion References <\/td>\n<\/tr>\n | ||||||
366<\/td>\n | 8. Index A B C D <\/td>\n<\/tr>\n | ||||||
367<\/td>\n | E F G H <\/td>\n<\/tr>\n | ||||||
368<\/td>\n | I K L M <\/td>\n<\/tr>\n | ||||||
369<\/td>\n | N O P Q R <\/td>\n<\/tr>\n | ||||||
370<\/td>\n | S <\/td>\n<\/tr>\n | ||||||
371<\/td>\n | T U V W <\/td>\n<\/tr>\n | ||||||
372<\/td>\n | Z <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Energy Production and Reservoir Water Quality<\/b><\/p>\n |