BSI PD 6688-1-4:2015 – TC:2020 Edition
$280.87
Tracked Changes. Background information to the National Annex to BS EN 1991-1-4 and additional guidance
Published By | Publication Date | Number of Pages |
BSI | 2020 | 201 |
PDF Catalog
PDF Pages | PDF Title |
---|---|
104 | Foreword |
106 | Introduction 1 Scope 2 UK National Annex to BS EN 1991-1-4:2005 |
107 | Figure 1 An example of altitude correction factors |
109 | Figure 2āHill parameters in undulating terrain |
116 | 3 Data that can be used in conjunction with BS EN 1991-1-4:2005 |
117 | Figure 3āTypical examples of buildings with re-entrant corners and recessed bays |
118 | Figure 4āExamples of flush irregular walls |
119 | Figure 5āKeys for walls of inset storey |
120 | Figure 6 Key for inset storey Figure 7 Key to canopies attached to buildings Table 1āGlobal vertical force coefficients for canopies attached to tall buildings |
121 | Table 2āInternal pressure coefficients cpi for open-sided buildings Table 3 Internal pressure coefficients cpi for open-topped vertical cylinders |
122 | Figure 8āWind directions for a rectangular plan building |
124 | Figure 9āKey for vertical walls of buildings Figure 10āDefinitions of crosswind breadth and in wind depth Table 4āExternal pressure coefficients Cpe for vertical walls of rectangular-plan buildings |
125 | Table 5 Reduction factors for zone A on vertical walls of polygonalāplan buildings |
126 | Annex A (informative) Vortex shedding and aeroelastic instabilities |
129 | Table A.1āStrouhal numbers St for different cross-sections |
130 | Figure A.1āStrouhal number St for rectangular cross-sections with sharp corners Figure A.2āStrouhal number St for bridge decks |
132 | Figure A.3āBridge types and reference dimensions |
133 | Figure A.4āBridge deck details |
136 | Table A.2āBasic value of the lateral force coefficient clat,0 for different cross-sections |
137 | Figure A.5āBasic value of the lateral force coefficient clat,0 versus Reynolds number Re(vcrit,i) Table A.3 Lateral force coefficient clat versus critical wind velocity ratio vcrit,i/vm,Lj |
138 | Figure A.6āExamples for application of the correlation length Lj (j = 1, 2, 3) |
139 | Table A.4 Effective correlation length Lj as a function of vibration amplitudeĀ yF(sj) |
140 | Table A.5āCorrelation length factor KW and mode shape factor K for some simple structures |
142 | Figure A.7āIn-line and grouped arrangements of cylinders |
144 | Table A.6āConstants for determination of the effect of vortex shedding |
147 | Table A.7āAssessment of vortex excitation effects |
149 | Table A.8āFactor of galloping instability aG |
150 | Table A.9āļæ½Data for the estimation of crosswind response of coupled cylinders at in-line and groupedĀ arrangements |
153 | Figure A.8 Geometric parameters for interference galloping |
154 | Figure A.9āļæ½Rate of change of aerodynamic moment coefficient dcM/dĪø with respect to geometric centre āGCā for rectangular section |
157 | Annex B (informative) Along-wind response of lattice towers |
159 | FigureĀ B.1āGust peak factor (Davenportās g) TableĀ B.1āļæ½Length scale zLu for a single roughness change from sea to country terrain, for an upwind fetch from site to sea of x(km) |
161 | FigureĀ B.2āDefinition of fetch for two roughness changes TableĀ B.2āLength scale for zLu for two roughness changes where x1Ā =Ā 0,1 km for an upwind fetch of x km |
162 | TableĀ B.3āLength scale for zLu for two roughness changes where x1Ā =Ā 0,3Ā km for an upwind fetch of x km TableĀ B.4āLength scale for zLu for two roughness changes where x1Ā =Ā 1Ā km for an upwind fetch of x km |
163 | TableĀ B.5āLength scale for zLu for two roughness changes where x1Ā =Ā 3Ā km for an upwind fetch of x km TableĀ B.6āLength scale for zLu for two roughness changes where x1Ā =Ā 10Ā km for an upwind fetch of x km |
164 | TableĀ B.7āLength scale for zLu for two roughness changes where x1Ā =Ā 30Ā km for an upwind fetch of x km |
165 | FigureĀ B.3āFictitious square lattice tower withĀ 12Ā panels |
166 | TableĀ B.8āMeteorological parameters |
167 | TableĀ B.9āNonādimensional coefficients, wind forces and wind moments |
168 | TableĀ B.10āValues of c(z) c(zā) |
169 | TableĀ B.11āValues of C(zāzā) TableĀ B.12āValues of c(z)Ā c(zā)Ā C(zāzā) |
171 | TableĀ B.13 Nonādimensional coefficients and wind forces |
172 | TableĀ B.14āValues of c(z)Ā c(zā) TableĀ B.15āValues of c(z)Ā c(zā)Ā C(zāzā) |
173 | TableĀ B.16āNonādimensional coefficients, wind forces and moments |
175 | TableĀ B.17āValues of c(z)Ā c(zā) |
176 | TableĀ B.18āValues of C(zāzā) TableĀ B.19āValues of c(z)Ā c(zā)Ā C(zāzā) |
178 | TableĀ B.20 Nonādimensional coefficients and wind forces |
179 | TableĀ B.21āValues of c(z)Ā c(zā) TableĀ B.22āValues of c(z)Ā c(zā)Ā C(zāzā) |
181 | TableĀ B.23 Nonādimensional coefficients and wind forces |
182 | FigureĀ B.4āIllustration of parameters for shear patch loading |
183 | TableĀ B.24āLever arms, wind loads and moments above zip Table B.25āLever arms, wind loads and moments below zip |
185 | TableĀ B.26āValues of c(z)Ā c(zā) |
186 | TableĀ B.27āValuesof C(zāzā) TableĀ B.28āValues of c(z)Ā c(zā)Ā C(zāzā) |
188 | TableĀ B.29āMeteorological parameters TableĀ B.30āNonādimensional coefficients, wind forces and wind moments |
190 | TableĀ B.31āValues of c(z)Ā c(zā) |
191 | TableĀ B.32āValues of C(zāzā) TableĀ B.33āValues of c(z)Ā c(zā)Ā C(zāzā) |
193 | TableĀ B.34 Large ancillary wind resistance |
195 | Bibliography |