{"id":219047,"date":"2024-10-19T14:12:47","date_gmt":"2024-10-19T14:12:47","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-1377-32018\/"},"modified":"2024-10-25T07:30:28","modified_gmt":"2024-10-25T07:30:28","slug":"bs-1377-32018","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-1377-32018\/","title":{"rendered":"BS 1377-3:2018"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
4<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | 1 Scope <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | 2 Normative references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | 4 Determination of the organic matter content <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 5 Determination of total organic carbon (TOC) <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 6 Determination of the mass loss on ignition <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 7 Determination of sulfur compounds <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Table 1 \u2014 Example concentration of calibration ranges Table 2 \u2014 Example anion concentrations in calibration standards <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | Table 3 \u2014 The concentration as a % of the upper limit of the apparatus of the different calibration standards for ICP-AES Table 4 \u2014 Example of five calibration standards for copper, magnesium and sulfur <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Figure 1 \u2014 Constant-head device for use with ion-exchange column <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | Figure 2 \u2014 Ion-exchange column for sulfate determination <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Figure 3 \u2014 Schematic diagram of the apparatus for total reduced sulfur determination <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure 4 \u2014 Jones reductor assembly <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Figure 5 \u2014 Apparatus for determination of acid-soluble mono-sulfide (MS) <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 8 Determination of the carbonate content <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 9 Determination of the chloride content <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 10 Determination of magnesium \u2014 water-soluble magnesium in 2:1 extract <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | 11 Determination of total dissolved solids <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | 12 Determination of the pH value <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | 13 Determination of electrical resistivity <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Figure 6 \u2014 Testing undisturbed cylindrical samples <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Figure 7 \u2014 Design for open container for resistivity tests on saturated coarse soil <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Figure 8a \u2014 Design for reduced size open container for resistivity tests on fine-grain cohesive soil \u2014 Example of a small resistivity test cell for use with fine-grained soils <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Figure 8b \u2014 Design for reduced size open container for resistivity tests on fine-grain cohesive soil \u2014 Example of a reconstituted soil sample trimmed from a Proctor mould <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Figure 9 \u2014 Circuit diagram for resistivity test using Wenner probes <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | 14 Determination of the redox potential <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Annex A (informative)\u2002 Determination of sulfur compounds <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Methods of test for soils for civil engineering purposes – Chemical and electro-chemical testing<\/b><\/p>\n |