{"id":394106,"date":"2024-10-20T04:12:28","date_gmt":"2024-10-20T04:12:28","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/fema-p-2192-volume1-2020\/"},"modified":"2024-10-26T07:51:39","modified_gmt":"2024-10-26T07:51:39","slug":"fema-p-2192-volume1-2020","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/fema\/fema-p-2192-volume1-2020\/","title":{"rendered":"FEMA P 2192 Volume1 2020"},"content":{"rendered":"
None<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | 2020 NEHRP Recommended Seismic Provisions: Design Examples, Training Materials, and Design Flow Charts <\/td>\n<\/tr>\n | ||||||
2<\/td>\n | 2020 NEHRP (National Earthquake Hazards Reduction Program) Recommended Seismic Provisions: Design Examples <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Preface and Acknowledgements <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | Table of Contents <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | List of Figures <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | List of Tables <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Chapter 1: Introduction 1.1 Overview <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 1.2 Evolution of Earthquake Engineering <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 1.3 History and Role of the NEHRP Provisions <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 1.4 Key Updates to the 2020 NEHRP Provisions and ASCE\/SEI 7-22 1.4.1 Earthquake Ground Motions and Spectral Acceleration Parameters <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 1.4.2 New Shear Wall Seismic Force-Resisting Systems <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 1.4.3 Diaphragm Design <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 1.4.4 Nonstructural Components 1.4.5 Permitted Analytical Procedures and Configuration Irregularities <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 1.4.6 Displacement Requirements 1.4.7 Exceptions to Height Limitations <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 1.4.8 Nonbuilding Structures 1.4.9 Performance Intent and Seismic Resiliency <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 1.4.10 Seismic Lateral Earth Pressures 1.4.11 Soil-Structure Interaction 1.5 The NEHRP Design Examples <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 1.6 Organization and Presentation of the 2020 Design Examples H4 <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 1.6.2 Presentation <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 1.7 References <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Chapter 2: Fundamentals <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 2.1 Earthquake Phenomena <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 2.2 Structural Response to Ground Shaking 2.2.1 Response Spectra <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 2.2.2 Inelastic Response <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 2.2.3 Building Materials 2.2.3.1 WOOD 2.2.3.2 STEEL <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 2.2.3.3 REINFORCED CONCRETE 2.2.3.4 MASONRY 2.2.3.5 PRECAST CONCRETE <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 2.2.3.6 COMPOSITE STEEL AND CONCRETE 2.2.4 Building Systems <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 2.2.5 Supplementary Elements Added to Improve Structural Performance 2.3 Engineering Philosophy <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 2.4 Structural Analysis <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | 2.5 Nonstructural Elements of Buildings <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 2.6 Quality Assurance 2.7 Resilience-Based Design 2.7.1 Background <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 2.7.2 Functional Recovery Objective <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 2.7.2.1 HAZARD LEVEL 2.7.2.2 EXPECTED FUNCTIONAL RECOVERY TIME <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | 2.7.2.3 DESIRED OR ACCEPTABLE FUNCTIONAL RECOVERY TIME <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 2.7.3 Code-based Functional Recovery Design Provisions 2.7.3.1 SEISMIC FORCE-RESISTING SYSTEM <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 2.7.3.2 NONSTRUCTURAL SYSTEMS AND CONTENTS <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | 2.7.4 Voluntary Design for Functional Recovery <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 2.7.5 References <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Chapter 3: Earthquake Ground Motions 3.1 Overview <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | 3.2 Seismic Design Maps 3.2.1 Development of MCER, MCEG, and TL Maps <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 3.2.2 Updates from ASCE\/SEI 7-16 to ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 3.2.3 Online Access to Mapped and Other Ground-Motion Values <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | 3.3 Multi-Period Response Spectra <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | 3.3.1 Background 3.3.2 Design Parameters and Response Spectra of ASCE\/SEI 7-16 <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | 3.3.3 Site-Specific Requirements of ASCE\/SEI 7-16 <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | 3.3.4 New Ground Motion Parameters of ASCE\/SEI 7-22 Chapter 11 <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | 3.3.5 New Site Classes of ASCE\/SEI 7-22 Chapter 20 <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | 3.3.6 New Site-Specific Analysis Requirements of ASCE\/SEI 7-22 Chapter 21 <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | 3.3.7 Example Comparisons of Design Response Spectra <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | WUS Sites \u2013 Irvine (Southern California) and San Mateo (Northern California) <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | OCONUS Sites \u2013 Honolulu (Hawaii) and Anchorage (Alaska) <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | CEUS Sites \u2013 St. Louis (Missouri) and Memphis (Tennessee) <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | 3.4 Other Changes to Ground Motion Provisions in ASCE\/SEI 7-22 3.4.1 Maximum Considered Earthquake Geometric Mean (MCEG) Peak Ground Acceleration (ASCE\/SEI 7-22 Section 21.5) 3.4.2 Vertical Ground Motion for Seismic Design (ASCE\/SEI 7-22 Section 11.9) <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | 3.4.3 Site Class When Shear Wave Velocity Data are Unavailable (ASCE\/SEI 7-22 Section 20.3) <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | 3.5 References <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | Chapter 4: Reinforced Concrete Ductile Coupled Shear Wall System as a Distinct Seismic Force-Resisting System in ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | 4.1 Introduction <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | 4.2 Ductile Coupled Structural (Shear) Wall System of ACI 318-19 <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | 4.3 Ductile Coupled Structural (Shear) Wall System in ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | 4.4 FEMA P695 Studies Involving Ductile Coupled Structural (Shear) Walls <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | 4.5 Design of a Special Reinforced Concrete Ductile Coupled Wall 4.5.1 Introduction 4.5.1.1 GENERAL <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | 4.5.1.2 DESIGN CRITERIA <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | 4.5.1.3 DESIGN BASIS <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | 4.5.1.4 LOAD COMBINATIONS FOR DESIGN 4.5.1.5 SYSTEM IRREGULARITY AND ACCIDENTAL TORSION <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 4.5.1.6 REDUNDANCY FACTOR, \uf072 4.5.1.7 ANALYSIS BY EQUIVALENT LATERAL FORCE PROCEDURE Structural period calculation Base shear calculation <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | 4.5.1.8 MODAL RESPONSE SPECTRUM ANALYSIS <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | 4.5.1.9 STORY DRIFT LIMITATION 4.5.2 Design of Shear Walls 4.5.2.1 DESIGN LOADS <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | 4.5.2.2 DESIGN FOR SHEAR <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | 4.5.2.3 BOUNDARY ELEMENTS OF SPECIAL REINFORCED CONCRETE SHEAR WALLS (ACI 318-19 SECTION 18.10.6) <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | 4.5.2.4 CHECK STRENGTH UNDER FLEXURE AND AXIAL LOADS (ACI 318-19 SECTION 18.10.5.1) <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | 4.5.3 Design of Coupling Beam 4.5.3.1 DESIGN LOADS 4.5.3.2 DESIGN FOR FLEXURE <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | 4.5.3.3 MINIMUM TRANSVERSE REINFORCEMENT REQUIREMENTS 4.5.3.4 DESIGN FOR SHEAR <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | 4.6 Acknowledgements 4.7 References <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | Chapter 5: Coupled Composite Plate Shear Walls \/ Concrete Filled (C-PSW\/CFs) as a Distinct Seismic Force-Resisting System in ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | 5.1 Introduction <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 5.2 Coupled Composite Plate Shear Wall \/ Concrete Filled (C-PSW\/CF) Systems <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | 5.3 Coupled C-PSW\/CF System in ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | 5.4 FEMA P695 Studies Involving Coupled C-PSW\/CFs <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | 5.5 Design of Coupled C-PSW\/CF System 5.5.1 Overview <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | 5.5.2 Building Description <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | 5.5.3 General Information of the Considered Building 5.5.3.1 MATERIAL PROPERTIES 5.5.3.2 LOADS 5.5.3.3 LOAD COMBINATIONS <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | 5.5.3.4 BUILDING SEISMIC WEIGHT <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | 5.5.3.5 SEISMIC DESIGN PARAMETERS <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | 5.5.3.6 SEISMIC FORCES <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | 5.5.4 Structural Analysis (Seismic Design) 5.5.4.1 C-PSW\/CFS AND COUPLING BEAM SECTION <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | 5.5.4.2 NUMERICAL MODELING OF COUPLED C-PSW\/CF <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | 5.5.5 Design of Coupling Beams 5.5.5.1 FLEXURE-CRITICAL COUPLING BEAMS 5.5.5.2 EXPECTED FLEXURAL CAPACITY (MP.EXP.CB) <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | 5.5.5.3 MINIMUM AREA OF STEEL 5.5.5.4 STEEL PLATE SLENDERNESS REQUIREMENT FOR COUPLING BEAMS <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | 5.5.5.5 FLEXURAL STRENGTH (MP,CB) <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | 5.5.5.6 NOMINAL SHEAR STRENGTH (VN.CB) 5.5.5.7 FLEXURE-CRITICAL COUPLING BEAMS (REVISITED) <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | 5.5.6 Design of C-PSW\/CF 5.5.6.1 STEP 4-1: MINIMUM AND MAXIMUM AREA OF STEEL 5.5.6.2 STEEL PLATE SLENDERNESS REQUIREMENTS FOR COMPOSITE WALLS <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | 5.5.6.3 TIE SPACING REQUIREMENTS FOR COMPOSITE WALLS 5.5.6.4 REQUIRED WALL SHEAR STRENGTH 5.5.6.5 REQUIRED FLEXURAL STRENGTH OF COUPLED C-PSW\/CF <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | 5.5.6.6 COMPOSITE WALL RESISTANCE FACTOR <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | 5.5.6.7 WALL TENSILE STRENGTH 5.5.6.8 WALL COMPRESSION STRENGTH <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | 5.5.6.9 WALL FLEXURAL STRENGTH <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | 5.5.6.10 WALL SHEAR STRENGTH <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | 5.5.7 Coupling Beam Connection <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | 5.5.7.1 FLANGE PLATE CONNECTION DEMAND 5.5.7.2 CALCULATE REQUIRED LENGTH OF CJP WELDING 5.5.7.3 CHECK SHEAR STRENGTH OF COUPLING BEAM FLANGE PLATE <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | 5.5.7.4 CHECK SHEAR STRENGTH OF WALL WEB PLATES <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | 5.5.7.5 CHECK DUCTILE BEHAVIOR OF FLANGE PLATES <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | 5.5.7.6 CALCULATE FORCES IN WEB PLATES <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | 5.5.7.7 CALCULATE FORCE DEMAND ON C-SHAPED WELD 5.5.7.8 SELECT WELD GEOMETRY <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | 5.5.7.9 CALCULATE C-SHAPED WELD SHEAR & MOMENT CAPACITIES <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | 5.5.7.10 CALCULATE C-SHAPED WELD TENSION CAPACITY 5.5.7.11 CALCULATE THE UTILIZATION OF C-SHAPED WELD CAPACITY <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | 5.6 Acknowledgements 5.7 References <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | Chapter 6: Three-Story Cross-Laminated Timber (CLT) Shear Wall 6.1 Overview <\/td>\n<\/tr>\n | ||||||
225<\/td>\n | 6.2 Background <\/td>\n<\/tr>\n | ||||||
226<\/td>\n | 6.3 Cross-laminated Timber Shear Wall Example Description <\/td>\n<\/tr>\n | ||||||
229<\/td>\n | 6.4 Seismic Forces <\/td>\n<\/tr>\n | ||||||
231<\/td>\n | 6.5 CLT Shear Wall Shear Strength <\/td>\n<\/tr>\n | ||||||
233<\/td>\n | 6.5.1 Shear Capacity of Prescribed Connectors <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | 6.5.2 Shear Capacity of CLT Panel <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | 6.6 CLT Hold-down and Compression Zone for Overturning 6.6.1 CLT Shear Wall Hold-down Design <\/td>\n<\/tr>\n | ||||||
240<\/td>\n | 6.6.2 CLT Shear Wall Compression Zone <\/td>\n<\/tr>\n | ||||||
244<\/td>\n | 6.7 CLT Shear Wall Deflection <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | 6.8 References <\/td>\n<\/tr>\n | ||||||
248<\/td>\n | Chapter 7: Horizontal Diaphragm Design 7.1 Overview <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | 7.2 Introduction to Diaphragm Seismic Design Methods <\/td>\n<\/tr>\n | ||||||
254<\/td>\n | 7.3 Step-By-Step Determination of Diaphragm Design Forces 7.3.1 Step-By-Step Determination of Diaphragm Design Forces Using the Section 12.10.1 and 12.10.2 Traditional Method <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | 7.3.2 Step-By-Step Determination of Diaphragm Design Forces Using the Section 12.10.3 Alternative Provisions <\/td>\n<\/tr>\n | ||||||
262<\/td>\n | 7.3.3. Step-By-Step Determination of Diaphragm Design Forces Using the Section 12.10.4 Alternative Diaphragm Design Provisions for One-Story Structures with Flexible Diaphragms and Rigid Vertical Elements (Alternative RWFD Provisions) <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | 7.4 Example: One-Story Wood Assembly Hall 7.4.1 Example Using the ASCE\/SEI 7-22 Section 12.10.1 and 12.10.2 Traditional Diaphragm Design Method <\/td>\n<\/tr>\n | ||||||
270<\/td>\n | 7.4.2 Example: One-Story Wood Assembly Hall \u2013 ASCE\/SEI 7-22 Section 12.10.3 Alternative Diaphragm Design Method <\/td>\n<\/tr>\n | ||||||
273<\/td>\n | 7.5 Example: Multi-Story Steel Building with Steel Deck Diaphragms 7.5.1 Example: Multi-Story Steel Building – Section 12.10.1 and 12.10.2 Traditional Diaphragm Design Method <\/td>\n<\/tr>\n | ||||||
280<\/td>\n | 7.5.2 Example: Multi-story Steel Building \u2013 ASCE\/SEI 7-22 Section 12.10.3 Alternative Diaphragm Design Method <\/td>\n<\/tr>\n | ||||||
285<\/td>\n | 7.5.3 Comparison of Traditional and Alternative Procedure Diaphragm Design Forces <\/td>\n<\/tr>\n | ||||||
286<\/td>\n | 7.6 Example: One-Story RWFD Bare Steel Deck Diaphragm Building 7.6.1 Example: One-Story Bare Steel Deck Diaphragm Building Diaphragm Design \u2013 ASCE\/SEI 7-22 Section 12.10.1 and 12.10.2 Traditional Design method <\/td>\n<\/tr>\n | ||||||
290<\/td>\n | 7.6.2 Example: One-Story Bare Steel Deck Diaphragm Building Diaphragm Design -Section 12.10.4 Alternative Design Method with Diaphragm Meeting AISI S400 Special Seismic Detailing Provisions <\/td>\n<\/tr>\n | ||||||
296<\/td>\n | 7.6.3 Example: One-Story Bare Steel Deck Diaphragm Building Diaphragm Design \u2013 ASCE\/SEI 7-22 Section 12.10.4 Alternative Design Method with Diaphragm NOT Meeting AISI S400 Special Seismic Detailing Provisions <\/td>\n<\/tr>\n | ||||||
301<\/td>\n | 7.6.4 Comparison of Diaphragm Design Forces for Traditional and Alternative RWFD Provisions <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | 7.7 References <\/td>\n<\/tr>\n | ||||||
303<\/td>\n | Chapter 8: Nonstructural Components 8.1 Overview <\/td>\n<\/tr>\n | ||||||
305<\/td>\n | 8.2 Development and Background of the Requirements for Nonstructural Components 8.2.1 Approach to and Performance Objectives for Seismic Design of Nonstructural Components <\/td>\n<\/tr>\n | ||||||
306<\/td>\n | 8.2.2 Force Equations <\/td>\n<\/tr>\n | ||||||
307<\/td>\n | 8.2.3 Development of Nonstructural Seismic Design Force Equations in ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
308<\/td>\n | 8.2.3.1 NIST GCR 18-917 43 <\/td>\n<\/tr>\n | ||||||
310<\/td>\n | 8.2.3.2 REVISIONS MADE IN THE 2020 NEHRP PROVISIONS <\/td>\n<\/tr>\n | ||||||
311<\/td>\n | 8.2.3.3 REVISIONS MADE FOR ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
314<\/td>\n | 8.2.4 Load Combinations and Acceptance Criteria <\/td>\n<\/tr>\n | ||||||
316<\/td>\n | 8.2.5 Component Importance Factor, Ip 8.2.6 Seismic Coefficient at Grade, 0.4SDS 8.2.7 Amplification with Height, Hf <\/td>\n<\/tr>\n | ||||||
318<\/td>\n | 8.2.8 Structure Ductility Reduction Factor, R\u03bc <\/td>\n<\/tr>\n | ||||||
320<\/td>\n | 8.2.9 Component Resonance Ductility Factor, CAR 8.2.9.1 COMPONENT PERIOD AND BUILDING PERIOD <\/td>\n<\/tr>\n | ||||||
322<\/td>\n | 8.2.9.2 COMPONENT AND\/OR ANCHORAGE DUCTILITY <\/td>\n<\/tr>\n | ||||||
323<\/td>\n | 8.2.9.3 CAR CATEGORIES <\/td>\n<\/tr>\n | ||||||
325<\/td>\n | 8.2.10 Component Strength Factor, Rpo 8.2.11 Equipment Support Structures and Platforms and Distribution System Supports <\/td>\n<\/tr>\n | ||||||
328<\/td>\n | 8.2.12 Upper and Lower Bound Seismic Design Forces 8.2.13 Nonlinear Response History Analysis 8.2.14 Accommodation of Seismic Relative Displacements <\/td>\n<\/tr>\n | ||||||
330<\/td>\n | 8.2.15 Component Anchorage Factors and Acceptance Criteria <\/td>\n<\/tr>\n | ||||||
332<\/td>\n | 8.2.16 Construction Documents 8.2.17 Exempt Items <\/td>\n<\/tr>\n | ||||||
333<\/td>\n | 8.2.18 Pre-Manufactured Modular Mechanical and Electrical Systems <\/td>\n<\/tr>\n | ||||||
334<\/td>\n | 8.3 Architectural Concrete Wall Panel 8.3.1 Example Description <\/td>\n<\/tr>\n | ||||||
336<\/td>\n | 8.3.2 Providing Gravity Support and Accommodating Story Drift in Cladding <\/td>\n<\/tr>\n | ||||||
340<\/td>\n | 8.3.3 Design Requirements 8.3.3.1 ASCE\/SEI 7-22 PARAMETERS AND COEFFICIENTS <\/td>\n<\/tr>\n | ||||||
344<\/td>\n | 8.3.3.2 APPLICABLE REQUIREMENTS 8.3.4 Spandrel Panel \u2013 Wall Element and Body of Wall Panel Connections 8.3.4.1 CONNECTION LAYOUT <\/td>\n<\/tr>\n | ||||||
347<\/td>\n | 8.3.4.2 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n | ||||||
348<\/td>\n | 8.3.4.3 PROPORTIONING AND DESIGN <\/td>\n<\/tr>\n | ||||||
350<\/td>\n | 8.3.4.4 PRESCRIBED SEISMIC DISPLACEMENTS 8.3.5 Spandrel Panel \u2013 Fasteners of the Connecting System 8.3.5.1 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n | ||||||
352<\/td>\n | 8.3.5.2 PROPORTIONING AND DESIGN <\/td>\n<\/tr>\n | ||||||
355<\/td>\n | 8.3.5.3 PRESCRIBED SEISMIC DISPLACEMENTS 8.3.6 Column Cover 8.3.6.1 CONNECTION LAYOUT <\/td>\n<\/tr>\n | ||||||
357<\/td>\n | 8.3.6.2 PRESCRIBED SEISMIC FORCES 8.3.6.3 PRESCRIBED SEISMIC DISPLACEMENTS <\/td>\n<\/tr>\n | ||||||
360<\/td>\n | 8.3.7 Additional Design Considerations 8.3.7.1 PERFORMANCE INTENT FOR GLAZING IN EARTHQUAKES <\/td>\n<\/tr>\n | ||||||
365<\/td>\n | 8.3.7.2 WINDOW FRAME SYSTEM 8.3.7.3 BUILDING CORNERS <\/td>\n<\/tr>\n | ||||||
366<\/td>\n | 8.3.7.4 DIMENSIONAL COORDINATION 8.4 Seismic Analysis of Egress Stairs 8.4.1 Example Description <\/td>\n<\/tr>\n | ||||||
369<\/td>\n | 8.4.2 Design Requirements 8.4.2.1 ASCE\/SEI 7-22 PARAMETERS AND COEFFICIENTS <\/td>\n<\/tr>\n | ||||||
372<\/td>\n | 8.4.2.2 APPLICABLE REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
373<\/td>\n | 8.4.3 Prescribed Seismic Forces <\/td>\n<\/tr>\n | ||||||
374<\/td>\n | 8.4.3.1 EGRESS STAIRWAYS NOT PART OF THE BUILDING SEISMIC FORCE-RESISTING SYSTEM <\/td>\n<\/tr>\n | ||||||
377<\/td>\n | 8.4.3.2 EGRESS STAIRS AND RAMP FASTENERS AND ATTACHMENTS <\/td>\n<\/tr>\n | ||||||
379<\/td>\n | 8.4.4 Prescribed Seismic Displacements <\/td>\n<\/tr>\n | ||||||
382<\/td>\n | 8.5 HVAC Fan Unit Support 8.5.1 Example Description <\/td>\n<\/tr>\n | ||||||
383<\/td>\n | 8.5.2 Design Requirements 8.5.2.1 ASCE\/SEI 7-22 PARAMETERS AND COEFFICIENTS <\/td>\n<\/tr>\n | ||||||
386<\/td>\n | 8.5.2.2 APPLICABLE REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
387<\/td>\n | 8.5.3 Case 1: Direct Attachment to Structure <\/td>\n<\/tr>\n | ||||||
388<\/td>\n | 8.5.3.1 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n | ||||||
389<\/td>\n | 8.5.3.2 PROPORTIONING AND DESIGN 8.5.4 Case 2: Support on Vibration Isolation Springs <\/td>\n<\/tr>\n | ||||||
391<\/td>\n | 8.5.4.1 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n | ||||||
392<\/td>\n | 8.5.4.2 PROPORTIONING AND DESIGN <\/td>\n<\/tr>\n | ||||||
395<\/td>\n | 8.5.5 Additional Considerations for Support on Vibration Isolators <\/td>\n<\/tr>\n | ||||||
397<\/td>\n | 8.6 Piping System Seismic Design 8.6.1 Example Description <\/td>\n<\/tr>\n | ||||||
404<\/td>\n | 8.6.2 Design Requirements 8.6.2.1 ASCE\/SEI 7-22 PARAMETERS AND COEFFICIENTS <\/td>\n<\/tr>\n | ||||||
407<\/td>\n | 8.6.2.2 APPLICABLE REQUIREMENTS 8.6.3 Piping System Design 8.6.3.1 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n | ||||||
408<\/td>\n | 8.6.3.2 PROPORTIONING AND DESIGN <\/td>\n<\/tr>\n | ||||||
413<\/td>\n | 8.6.4 Pipe Supports and Bracing <\/td>\n<\/tr>\n | ||||||
414<\/td>\n | 8.6.4.1 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n | ||||||
416<\/td>\n | 8.6.4.2 PROPORTIONING AND DESIGN <\/td>\n<\/tr>\n | ||||||
422<\/td>\n | 8.6.5 Prescribed Seismic Displacements <\/td>\n<\/tr>\n | ||||||
425<\/td>\n | 8.7 Elevated Vessel Seismic Design 8.7.1 Example Description <\/td>\n<\/tr>\n | ||||||
429<\/td>\n | 8.7.2 Design Requirements 8.7.2.1 ASCE\/SEI 7-22 PARAMETERS AND COEFFICIENTS <\/td>\n<\/tr>\n | ||||||
434<\/td>\n | 8.7.2.2 APPLICABLE REQUIREMENTS 8.7.3 Vessel Support and Attachments 8.7.3.1 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n | ||||||
435<\/td>\n | 8.7.3.2 PROPORTIONING AND DESIGN <\/td>\n<\/tr>\n | ||||||
444<\/td>\n | 8.7.4 Supporting Frame 8.7.4.1 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n | ||||||
446<\/td>\n | 8.7.4.2 PROPORTIONING AND DESIGN <\/td>\n<\/tr>\n | ||||||
454<\/td>\n | 8.7.5 Design Considerations for the Gravity Load-Carrying System <\/td>\n<\/tr>\n | ||||||
457<\/td>\n | 8.8 References <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" FEMA P-2192-V1 2020 NEHRP Recommended Seismic Provisions: Design Examples, Training Materials, and Design Flow Charts – Volume I: Design Examples<\/b><\/p>\n |