{"id":394106,"date":"2024-10-20T04:12:28","date_gmt":"2024-10-20T04:12:28","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/fema-p-2192-volume1-2020\/"},"modified":"2024-10-26T07:51:39","modified_gmt":"2024-10-26T07:51:39","slug":"fema-p-2192-volume1-2020","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/fema\/fema-p-2192-volume1-2020\/","title":{"rendered":"FEMA P 2192 Volume1 2020"},"content":{"rendered":"

None<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
1<\/td>\n2020 NEHRP Recommended Seismic Provisions: Design Examples, Training Materials, and Design Flow Charts <\/td>\n<\/tr>\n
2<\/td>\n2020 NEHRP (National Earthquake Hazards Reduction Program) Recommended Seismic Provisions: Design Examples <\/td>\n<\/tr>\n
4<\/td>\nForeword <\/td>\n<\/tr>\n
5<\/td>\nPreface and Acknowledgements <\/td>\n<\/tr>\n
7<\/td>\nTable of Contents <\/td>\n<\/tr>\n
14<\/td>\nList of Figures <\/td>\n<\/tr>\n
20<\/td>\nList of Tables <\/td>\n<\/tr>\n
22<\/td>\nChapter 1: Introduction
1.1 Overview <\/td>\n<\/tr>\n
24<\/td>\n1.2 Evolution of Earthquake Engineering <\/td>\n<\/tr>\n
28<\/td>\n1.3 History and Role of the NEHRP Provisions <\/td>\n<\/tr>\n
32<\/td>\n1.4 Key Updates to the 2020 NEHRP Provisions and ASCE\/SEI 7-22
1.4.1 Earthquake Ground Motions and Spectral Acceleration Parameters <\/td>\n<\/tr>\n
35<\/td>\n1.4.2 New Shear Wall Seismic Force-Resisting Systems <\/td>\n<\/tr>\n
36<\/td>\n1.4.3 Diaphragm Design <\/td>\n<\/tr>\n
37<\/td>\n1.4.4 Nonstructural Components
1.4.5 Permitted Analytical Procedures and Configuration Irregularities <\/td>\n<\/tr>\n
38<\/td>\n1.4.6 Displacement Requirements
1.4.7 Exceptions to Height Limitations <\/td>\n<\/tr>\n
39<\/td>\n1.4.8 Nonbuilding Structures
1.4.9 Performance Intent and Seismic Resiliency <\/td>\n<\/tr>\n
40<\/td>\n1.4.10 Seismic Lateral Earth Pressures
1.4.11 Soil-Structure Interaction
1.5 The NEHRP Design Examples <\/td>\n<\/tr>\n
44<\/td>\n1.6 Organization and Presentation of the 2020 Design Examples
H4 <\/td>\n<\/tr>\n
45<\/td>\n1.6.2 Presentation <\/td>\n<\/tr>\n
46<\/td>\n1.7 References <\/td>\n<\/tr>\n
52<\/td>\nChapter 2: Fundamentals <\/td>\n<\/tr>\n
53<\/td>\n2.1 Earthquake Phenomena <\/td>\n<\/tr>\n
55<\/td>\n2.2 Structural Response to Ground Shaking
2.2.1 Response Spectra <\/td>\n<\/tr>\n
61<\/td>\n2.2.2 Inelastic Response <\/td>\n<\/tr>\n
64<\/td>\n2.2.3 Building Materials
2.2.3.1 WOOD
2.2.3.2 STEEL <\/td>\n<\/tr>\n
65<\/td>\n2.2.3.3 REINFORCED CONCRETE
2.2.3.4 MASONRY
2.2.3.5 PRECAST CONCRETE <\/td>\n<\/tr>\n
66<\/td>\n2.2.3.6 COMPOSITE STEEL AND CONCRETE
2.2.4 Building Systems <\/td>\n<\/tr>\n
67<\/td>\n2.2.5 Supplementary Elements Added to Improve Structural Performance
2.3 Engineering Philosophy <\/td>\n<\/tr>\n
69<\/td>\n2.4 Structural Analysis <\/td>\n<\/tr>\n
72<\/td>\n2.5 Nonstructural Elements of Buildings <\/td>\n<\/tr>\n
73<\/td>\n2.6 Quality Assurance
2.7 Resilience-Based Design
2.7.1 Background <\/td>\n<\/tr>\n
75<\/td>\n2.7.2 Functional Recovery Objective <\/td>\n<\/tr>\n
77<\/td>\n2.7.2.1 HAZARD LEVEL
2.7.2.2 EXPECTED FUNCTIONAL RECOVERY TIME <\/td>\n<\/tr>\n
79<\/td>\n2.7.2.3 DESIRED OR ACCEPTABLE FUNCTIONAL RECOVERY TIME <\/td>\n<\/tr>\n
81<\/td>\n2.7.3 Code-based Functional Recovery Design Provisions
2.7.3.1 SEISMIC FORCE-RESISTING SYSTEM <\/td>\n<\/tr>\n
85<\/td>\n2.7.3.2 NONSTRUCTURAL SYSTEMS AND CONTENTS <\/td>\n<\/tr>\n
86<\/td>\n2.7.4 Voluntary Design for Functional Recovery <\/td>\n<\/tr>\n
88<\/td>\n2.7.5 References <\/td>\n<\/tr>\n
92<\/td>\nChapter 3: Earthquake Ground Motions
3.1 Overview <\/td>\n<\/tr>\n
93<\/td>\n3.2 Seismic Design Maps
3.2.1 Development of MCER, MCEG, and TL Maps <\/td>\n<\/tr>\n
94<\/td>\n3.2.2 Updates from ASCE\/SEI 7-16 to ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
95<\/td>\n3.2.3 Online Access to Mapped and Other Ground-Motion Values <\/td>\n<\/tr>\n
100<\/td>\n3.3 Multi-Period Response Spectra <\/td>\n<\/tr>\n
101<\/td>\n3.3.1 Background
3.3.2 Design Parameters and Response Spectra of ASCE\/SEI 7-16 <\/td>\n<\/tr>\n
103<\/td>\n3.3.3 Site-Specific Requirements of ASCE\/SEI 7-16 <\/td>\n<\/tr>\n
104<\/td>\n3.3.4 New Ground Motion Parameters of ASCE\/SEI 7-22 Chapter 11 <\/td>\n<\/tr>\n
108<\/td>\n3.3.5 New Site Classes of ASCE\/SEI 7-22 Chapter 20 <\/td>\n<\/tr>\n
109<\/td>\n3.3.6 New Site-Specific Analysis Requirements of ASCE\/SEI 7-22 Chapter 21 <\/td>\n<\/tr>\n
112<\/td>\n3.3.7 Example Comparisons of Design Response Spectra <\/td>\n<\/tr>\n
113<\/td>\nWUS Sites \u2013 Irvine (Southern California) and San Mateo (Northern California) <\/td>\n<\/tr>\n
115<\/td>\nOCONUS Sites \u2013 Honolulu (Hawaii) and Anchorage (Alaska) <\/td>\n<\/tr>\n
118<\/td>\nCEUS Sites \u2013 St. Louis (Missouri) and Memphis (Tennessee) <\/td>\n<\/tr>\n
120<\/td>\n3.4 Other Changes to Ground Motion Provisions in ASCE\/SEI 7-22
3.4.1 Maximum Considered Earthquake Geometric Mean (MCEG) Peak Ground Acceleration (ASCE\/SEI 7-22 Section 21.5)
3.4.2 Vertical Ground Motion for Seismic Design (ASCE\/SEI 7-22 Section 11.9) <\/td>\n<\/tr>\n
123<\/td>\n3.4.3 Site Class When Shear Wave Velocity Data are Unavailable (ASCE\/SEI 7-22 Section 20.3) <\/td>\n<\/tr>\n
125<\/td>\n3.5 References <\/td>\n<\/tr>\n
127<\/td>\nChapter 4: Reinforced Concrete Ductile Coupled Shear Wall System as a Distinct Seismic Force-Resisting System in ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
128<\/td>\n4.1 Introduction <\/td>\n<\/tr>\n
130<\/td>\n4.2 Ductile Coupled Structural (Shear) Wall System of ACI 318-19 <\/td>\n<\/tr>\n
132<\/td>\n4.3 Ductile Coupled Structural (Shear) Wall System in ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
134<\/td>\n4.4 FEMA P695 Studies Involving Ductile Coupled Structural (Shear) Walls <\/td>\n<\/tr>\n
143<\/td>\n4.5 Design of a Special Reinforced Concrete Ductile Coupled Wall
4.5.1 Introduction
4.5.1.1 GENERAL <\/td>\n<\/tr>\n
145<\/td>\n4.5.1.2 DESIGN CRITERIA <\/td>\n<\/tr>\n
146<\/td>\n4.5.1.3 DESIGN BASIS <\/td>\n<\/tr>\n
147<\/td>\n4.5.1.4 LOAD COMBINATIONS FOR DESIGN
4.5.1.5 SYSTEM IRREGULARITY AND ACCIDENTAL TORSION <\/td>\n<\/tr>\n
148<\/td>\n4.5.1.6 REDUNDANCY FACTOR, \uf072
4.5.1.7 ANALYSIS BY EQUIVALENT LATERAL FORCE PROCEDURE
Structural period calculation
Base shear calculation <\/td>\n<\/tr>\n
149<\/td>\n4.5.1.8 MODAL RESPONSE SPECTRUM ANALYSIS <\/td>\n<\/tr>\n
152<\/td>\n4.5.1.9 STORY DRIFT LIMITATION
4.5.2 Design of Shear Walls
4.5.2.1 DESIGN LOADS <\/td>\n<\/tr>\n
153<\/td>\n4.5.2.2 DESIGN FOR SHEAR <\/td>\n<\/tr>\n
156<\/td>\n4.5.2.3 BOUNDARY ELEMENTS OF SPECIAL REINFORCED CONCRETE SHEAR WALLS (ACI 318-19 SECTION 18.10.6) <\/td>\n<\/tr>\n
166<\/td>\n4.5.2.4 CHECK STRENGTH UNDER FLEXURE AND AXIAL LOADS (ACI 318-19 SECTION 18.10.5.1) <\/td>\n<\/tr>\n
167<\/td>\n4.5.3 Design of Coupling Beam
4.5.3.1 DESIGN LOADS
4.5.3.2 DESIGN FOR FLEXURE <\/td>\n<\/tr>\n
169<\/td>\n4.5.3.3 MINIMUM TRANSVERSE REINFORCEMENT REQUIREMENTS
4.5.3.4 DESIGN FOR SHEAR <\/td>\n<\/tr>\n
171<\/td>\n4.6 Acknowledgements
4.7 References <\/td>\n<\/tr>\n
173<\/td>\nChapter 5: Coupled Composite Plate Shear Walls \/ Concrete Filled (C-PSW\/CFs) as a Distinct Seismic Force-Resisting System in ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
174<\/td>\n5.1 Introduction <\/td>\n<\/tr>\n
175<\/td>\n5.2 Coupled Composite Plate Shear Wall \/ Concrete Filled (C-PSW\/CF) Systems <\/td>\n<\/tr>\n
177<\/td>\n5.3 Coupled C-PSW\/CF System in ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
181<\/td>\n5.4 FEMA P695 Studies Involving Coupled C-PSW\/CFs <\/td>\n<\/tr>\n
186<\/td>\n5.5 Design of Coupled C-PSW\/CF System
5.5.1 Overview <\/td>\n<\/tr>\n
187<\/td>\n5.5.2 Building Description <\/td>\n<\/tr>\n
189<\/td>\n5.5.3 General Information of the Considered Building
5.5.3.1 MATERIAL PROPERTIES
5.5.3.2 LOADS
5.5.3.3 LOAD COMBINATIONS <\/td>\n<\/tr>\n
190<\/td>\n5.5.3.4 BUILDING SEISMIC WEIGHT <\/td>\n<\/tr>\n
191<\/td>\n5.5.3.5 SEISMIC DESIGN PARAMETERS <\/td>\n<\/tr>\n
192<\/td>\n5.5.3.6 SEISMIC FORCES <\/td>\n<\/tr>\n
194<\/td>\n5.5.4 Structural Analysis (Seismic Design)
5.5.4.1 C-PSW\/CFS AND COUPLING BEAM SECTION <\/td>\n<\/tr>\n
196<\/td>\n5.5.4.2 NUMERICAL MODELING OF COUPLED C-PSW\/CF <\/td>\n<\/tr>\n
200<\/td>\n5.5.5 Design of Coupling Beams
5.5.5.1 FLEXURE-CRITICAL COUPLING BEAMS
5.5.5.2 EXPECTED FLEXURAL CAPACITY (MP.EXP.CB) <\/td>\n<\/tr>\n
201<\/td>\n5.5.5.3 MINIMUM AREA OF STEEL
5.5.5.4 STEEL PLATE SLENDERNESS REQUIREMENT FOR COUPLING BEAMS <\/td>\n<\/tr>\n
202<\/td>\n5.5.5.5 FLEXURAL STRENGTH (MP,CB) <\/td>\n<\/tr>\n
203<\/td>\n5.5.5.6 NOMINAL SHEAR STRENGTH (VN.CB)
5.5.5.7 FLEXURE-CRITICAL COUPLING BEAMS (REVISITED) <\/td>\n<\/tr>\n
204<\/td>\n5.5.6 Design of C-PSW\/CF
5.5.6.1 STEP 4-1: MINIMUM AND MAXIMUM AREA OF STEEL
5.5.6.2 STEEL PLATE SLENDERNESS REQUIREMENTS FOR COMPOSITE WALLS <\/td>\n<\/tr>\n
205<\/td>\n5.5.6.3 TIE SPACING REQUIREMENTS FOR COMPOSITE WALLS
5.5.6.4 REQUIRED WALL SHEAR STRENGTH
5.5.6.5 REQUIRED FLEXURAL STRENGTH OF COUPLED C-PSW\/CF <\/td>\n<\/tr>\n
206<\/td>\n5.5.6.6 COMPOSITE WALL RESISTANCE FACTOR <\/td>\n<\/tr>\n
207<\/td>\n5.5.6.7 WALL TENSILE STRENGTH
5.5.6.8 WALL COMPRESSION STRENGTH <\/td>\n<\/tr>\n
208<\/td>\n5.5.6.9 WALL FLEXURAL STRENGTH <\/td>\n<\/tr>\n
211<\/td>\n5.5.6.10 WALL SHEAR STRENGTH <\/td>\n<\/tr>\n
212<\/td>\n5.5.7 Coupling Beam Connection <\/td>\n<\/tr>\n
215<\/td>\n5.5.7.1 FLANGE PLATE CONNECTION DEMAND
5.5.7.2 CALCULATE REQUIRED LENGTH OF CJP WELDING
5.5.7.3 CHECK SHEAR STRENGTH OF COUPLING BEAM FLANGE PLATE <\/td>\n<\/tr>\n
216<\/td>\n5.5.7.4 CHECK SHEAR STRENGTH OF WALL WEB PLATES <\/td>\n<\/tr>\n
217<\/td>\n5.5.7.5 CHECK DUCTILE BEHAVIOR OF FLANGE PLATES <\/td>\n<\/tr>\n
218<\/td>\n5.5.7.6 CALCULATE FORCES IN WEB PLATES <\/td>\n<\/tr>\n
219<\/td>\n5.5.7.7 CALCULATE FORCE DEMAND ON C-SHAPED WELD
5.5.7.8 SELECT WELD GEOMETRY <\/td>\n<\/tr>\n
220<\/td>\n5.5.7.9 CALCULATE C-SHAPED WELD SHEAR & MOMENT CAPACITIES <\/td>\n<\/tr>\n
221<\/td>\n5.5.7.10 CALCULATE C-SHAPED WELD TENSION CAPACITY
5.5.7.11 CALCULATE THE UTILIZATION OF C-SHAPED WELD CAPACITY <\/td>\n<\/tr>\n
222<\/td>\n5.6 Acknowledgements
5.7 References <\/td>\n<\/tr>\n
224<\/td>\nChapter 6: Three-Story Cross-Laminated Timber (CLT) Shear Wall
6.1 Overview <\/td>\n<\/tr>\n
225<\/td>\n6.2 Background <\/td>\n<\/tr>\n
226<\/td>\n6.3 Cross-laminated Timber Shear Wall Example Description <\/td>\n<\/tr>\n
229<\/td>\n6.4 Seismic Forces <\/td>\n<\/tr>\n
231<\/td>\n6.5 CLT Shear Wall Shear Strength <\/td>\n<\/tr>\n
233<\/td>\n6.5.1 Shear Capacity of Prescribed Connectors <\/td>\n<\/tr>\n
234<\/td>\n6.5.2 Shear Capacity of CLT Panel <\/td>\n<\/tr>\n
235<\/td>\n6.6 CLT Hold-down and Compression Zone for Overturning
6.6.1 CLT Shear Wall Hold-down Design <\/td>\n<\/tr>\n
240<\/td>\n6.6.2 CLT Shear Wall Compression Zone <\/td>\n<\/tr>\n
244<\/td>\n6.7 CLT Shear Wall Deflection <\/td>\n<\/tr>\n
247<\/td>\n6.8 References <\/td>\n<\/tr>\n
248<\/td>\nChapter 7: Horizontal Diaphragm Design
7.1 Overview <\/td>\n<\/tr>\n
251<\/td>\n7.2 Introduction to Diaphragm Seismic Design Methods <\/td>\n<\/tr>\n
254<\/td>\n7.3 Step-By-Step Determination of Diaphragm Design Forces
7.3.1 Step-By-Step Determination of Diaphragm Design Forces Using the Section 12.10.1 and 12.10.2 Traditional Method <\/td>\n<\/tr>\n
256<\/td>\n7.3.2 Step-By-Step Determination of Diaphragm Design Forces Using the Section 12.10.3 Alternative Provisions <\/td>\n<\/tr>\n
262<\/td>\n7.3.3. Step-By-Step Determination of Diaphragm Design Forces Using the Section 12.10.4 Alternative Diaphragm Design Provisions for One-Story Structures with Flexible Diaphragms and Rigid Vertical Elements (Alternative RWFD Provisions) <\/td>\n<\/tr>\n
267<\/td>\n7.4 Example: One-Story Wood Assembly Hall
7.4.1 Example Using the ASCE\/SEI 7-22 Section 12.10.1 and 12.10.2 Traditional Diaphragm Design Method <\/td>\n<\/tr>\n
270<\/td>\n7.4.2 Example: One-Story Wood Assembly Hall \u2013 ASCE\/SEI 7-22 Section 12.10.3 Alternative Diaphragm Design Method <\/td>\n<\/tr>\n
273<\/td>\n7.5 Example: Multi-Story Steel Building with Steel Deck Diaphragms
7.5.1 Example: Multi-Story Steel Building – Section 12.10.1 and 12.10.2 Traditional Diaphragm Design Method <\/td>\n<\/tr>\n
280<\/td>\n7.5.2 Example: Multi-story Steel Building \u2013 ASCE\/SEI 7-22 Section 12.10.3 Alternative Diaphragm Design Method <\/td>\n<\/tr>\n
285<\/td>\n7.5.3 Comparison of Traditional and Alternative Procedure Diaphragm Design Forces <\/td>\n<\/tr>\n
286<\/td>\n7.6 Example: One-Story RWFD Bare Steel Deck Diaphragm Building
7.6.1 Example: One-Story Bare Steel Deck Diaphragm Building Diaphragm Design \u2013 ASCE\/SEI 7-22 Section 12.10.1 and 12.10.2 Traditional Design method <\/td>\n<\/tr>\n
290<\/td>\n 7.6.2 Example: One-Story Bare Steel Deck Diaphragm Building Diaphragm Design -Section 12.10.4 Alternative Design Method with Diaphragm Meeting AISI S400 Special Seismic Detailing Provisions <\/td>\n<\/tr>\n
296<\/td>\n 7.6.3 Example: One-Story Bare Steel Deck Diaphragm Building Diaphragm Design \u2013 ASCE\/SEI 7-22 Section 12.10.4 Alternative Design Method with Diaphragm NOT Meeting AISI S400 Special Seismic Detailing Provisions <\/td>\n<\/tr>\n
301<\/td>\n7.6.4 Comparison of Diaphragm Design Forces for Traditional and Alternative RWFD Provisions <\/td>\n<\/tr>\n
302<\/td>\n7.7 References <\/td>\n<\/tr>\n
303<\/td>\nChapter 8: Nonstructural Components
8.1 Overview <\/td>\n<\/tr>\n
305<\/td>\n8.2 Development and Background of the Requirements for Nonstructural Components
8.2.1 Approach to and Performance Objectives for Seismic Design of Nonstructural Components <\/td>\n<\/tr>\n
306<\/td>\n 8.2.2 Force Equations <\/td>\n<\/tr>\n
307<\/td>\n 8.2.3 Development of Nonstructural Seismic Design Force Equations in ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
308<\/td>\n8.2.3.1 NIST GCR 18-917 43 <\/td>\n<\/tr>\n
310<\/td>\n 8.2.3.2 REVISIONS MADE IN THE 2020 NEHRP PROVISIONS <\/td>\n<\/tr>\n
311<\/td>\n8.2.3.3 REVISIONS MADE FOR ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
314<\/td>\n8.2.4 Load Combinations and Acceptance Criteria <\/td>\n<\/tr>\n
316<\/td>\n8.2.5 Component Importance Factor, Ip
8.2.6 Seismic Coefficient at Grade, 0.4SDS
8.2.7 Amplification with Height, Hf <\/td>\n<\/tr>\n
318<\/td>\n8.2.8 Structure Ductility Reduction Factor, R\u03bc <\/td>\n<\/tr>\n
320<\/td>\n8.2.9 Component Resonance Ductility Factor, CAR
8.2.9.1 COMPONENT PERIOD AND BUILDING PERIOD <\/td>\n<\/tr>\n
322<\/td>\n 8.2.9.2 COMPONENT AND\/OR ANCHORAGE DUCTILITY <\/td>\n<\/tr>\n
323<\/td>\n 8.2.9.3 CAR CATEGORIES <\/td>\n<\/tr>\n
325<\/td>\n 8.2.10 Component Strength Factor, Rpo
8.2.11 Equipment Support Structures and Platforms and Distribution System Supports <\/td>\n<\/tr>\n
328<\/td>\n 8.2.12 Upper and Lower Bound Seismic Design Forces
8.2.13 Nonlinear Response History Analysis
8.2.14 Accommodation of Seismic Relative Displacements <\/td>\n<\/tr>\n
330<\/td>\n8.2.15 Component Anchorage Factors and Acceptance Criteria <\/td>\n<\/tr>\n
332<\/td>\n8.2.16 Construction Documents
8.2.17 Exempt Items <\/td>\n<\/tr>\n
333<\/td>\n8.2.18 Pre-Manufactured Modular Mechanical and Electrical Systems <\/td>\n<\/tr>\n
334<\/td>\n8.3 Architectural Concrete Wall Panel
8.3.1 Example Description <\/td>\n<\/tr>\n
336<\/td>\n8.3.2 Providing Gravity Support and Accommodating Story Drift in Cladding <\/td>\n<\/tr>\n
340<\/td>\n8.3.3 Design Requirements
8.3.3.1 ASCE\/SEI 7-22 PARAMETERS AND COEFFICIENTS <\/td>\n<\/tr>\n
344<\/td>\n 8.3.3.2 APPLICABLE REQUIREMENTS
8.3.4 Spandrel Panel \u2013 Wall Element and Body of Wall Panel Connections
8.3.4.1 CONNECTION LAYOUT <\/td>\n<\/tr>\n
347<\/td>\n 8.3.4.2 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n
348<\/td>\n 8.3.4.3 PROPORTIONING AND DESIGN <\/td>\n<\/tr>\n
350<\/td>\n 8.3.4.4 PRESCRIBED SEISMIC DISPLACEMENTS
8.3.5 Spandrel Panel \u2013 Fasteners of the Connecting System
8.3.5.1 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n
352<\/td>\n 8.3.5.2 PROPORTIONING AND DESIGN <\/td>\n<\/tr>\n
355<\/td>\n8.3.5.3 PRESCRIBED SEISMIC DISPLACEMENTS
8.3.6 Column Cover
8.3.6.1 CONNECTION LAYOUT <\/td>\n<\/tr>\n
357<\/td>\n 8.3.6.2 PRESCRIBED SEISMIC FORCES
8.3.6.3 PRESCRIBED SEISMIC DISPLACEMENTS <\/td>\n<\/tr>\n
360<\/td>\n8.3.7 Additional Design Considerations
8.3.7.1 PERFORMANCE INTENT FOR GLAZING IN EARTHQUAKES <\/td>\n<\/tr>\n
365<\/td>\n 8.3.7.2 WINDOW FRAME SYSTEM
8.3.7.3 BUILDING CORNERS <\/td>\n<\/tr>\n
366<\/td>\n 8.3.7.4 DIMENSIONAL COORDINATION
8.4 Seismic Analysis of Egress Stairs
8.4.1 Example Description <\/td>\n<\/tr>\n
369<\/td>\n 8.4.2 Design Requirements
8.4.2.1 ASCE\/SEI 7-22 PARAMETERS AND COEFFICIENTS <\/td>\n<\/tr>\n
372<\/td>\n 8.4.2.2 APPLICABLE REQUIREMENTS <\/td>\n<\/tr>\n
373<\/td>\n 8.4.3 Prescribed Seismic Forces <\/td>\n<\/tr>\n
374<\/td>\n 8.4.3.1 EGRESS STAIRWAYS NOT PART OF THE BUILDING SEISMIC FORCE-RESISTING SYSTEM <\/td>\n<\/tr>\n
377<\/td>\n 8.4.3.2 EGRESS STAIRS AND RAMP FASTENERS AND ATTACHMENTS <\/td>\n<\/tr>\n
379<\/td>\n 8.4.4 Prescribed Seismic Displacements <\/td>\n<\/tr>\n
382<\/td>\n8.5 HVAC Fan Unit Support
8.5.1 Example Description <\/td>\n<\/tr>\n
383<\/td>\n 8.5.2 Design Requirements
8.5.2.1 ASCE\/SEI 7-22 PARAMETERS AND COEFFICIENTS <\/td>\n<\/tr>\n
386<\/td>\n 8.5.2.2 APPLICABLE REQUIREMENTS <\/td>\n<\/tr>\n
387<\/td>\n 8.5.3 Case 1: Direct Attachment to Structure <\/td>\n<\/tr>\n
388<\/td>\n 8.5.3.1 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n
389<\/td>\n 8.5.3.2 PROPORTIONING AND DESIGN
8.5.4 Case 2: Support on Vibration Isolation Springs <\/td>\n<\/tr>\n
391<\/td>\n 8.5.4.1 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n
392<\/td>\n 8.5.4.2 PROPORTIONING AND DESIGN <\/td>\n<\/tr>\n
395<\/td>\n 8.5.5 Additional Considerations for Support on Vibration Isolators <\/td>\n<\/tr>\n
397<\/td>\n8.6 Piping System Seismic Design
8.6.1 Example Description <\/td>\n<\/tr>\n
404<\/td>\n 8.6.2 Design Requirements
8.6.2.1 ASCE\/SEI 7-22 PARAMETERS AND COEFFICIENTS <\/td>\n<\/tr>\n
407<\/td>\n 8.6.2.2 APPLICABLE REQUIREMENTS
8.6.3 Piping System Design
8.6.3.1 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n
408<\/td>\n 8.6.3.2 PROPORTIONING AND DESIGN <\/td>\n<\/tr>\n
413<\/td>\n 8.6.4 Pipe Supports and Bracing <\/td>\n<\/tr>\n
414<\/td>\n 8.6.4.1 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n
416<\/td>\n 8.6.4.2 PROPORTIONING AND DESIGN <\/td>\n<\/tr>\n
422<\/td>\n 8.6.5 Prescribed Seismic Displacements <\/td>\n<\/tr>\n
425<\/td>\n8.7 Elevated Vessel Seismic Design
8.7.1 Example Description <\/td>\n<\/tr>\n
429<\/td>\n 8.7.2 Design Requirements
8.7.2.1 ASCE\/SEI 7-22 PARAMETERS AND COEFFICIENTS <\/td>\n<\/tr>\n
434<\/td>\n 8.7.2.2 APPLICABLE REQUIREMENTS
8.7.3 Vessel Support and Attachments
8.7.3.1 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n
435<\/td>\n 8.7.3.2 PROPORTIONING AND DESIGN <\/td>\n<\/tr>\n
444<\/td>\n 8.7.4 Supporting Frame
8.7.4.1 PRESCRIBED SEISMIC FORCES <\/td>\n<\/tr>\n
446<\/td>\n 8.7.4.2 PROPORTIONING AND DESIGN <\/td>\n<\/tr>\n
454<\/td>\n 8.7.5 Design Considerations for the Gravity Load-Carrying System <\/td>\n<\/tr>\n
457<\/td>\n8.8 References <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

FEMA P-2192-V1 2020 NEHRP Recommended Seismic Provisions: Design Examples, Training Materials, and Design Flow Charts – Volume I: Design Examples<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
FEMA<\/b><\/a><\/td>\n2020<\/td>\n<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":394112,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2743],"product_tag":[],"class_list":{"0":"post-394106","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-fema","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/394106","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/394112"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=394106"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=394106"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=394106"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}